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PREFACE

This manual was written for the uninitiated. The reader with
merely a knowledge of high school mathematics should be able to obtai
a solution.to~-as well as additional information about-~-a linear
programming problem after studying this manual. Moreover, he should
ke able to obtain such a solution by employing either hand calculatio
or the UNIVAC 1108.

The manual is divided into three parts. Part II explains how to
obtain a solutiocn to a linear progr%mming problem by using hand
calculation. Part I provides the mathematical background necessary
to understand Part II. Part IITI describes the techniéal aspects of
finding & solution viéTthe UNIVAC 1108. An interpretation of the
additional information available from this computer’is also given in
the third part.

The reader wiﬁh a knowledge of elementary lineafralgebra may
therefore wish to begin with Part II; while the readér who wishes
‘merely to know "how to punch and arrange his cards" may refer to
‘%art III.

This manual is not mathematically "pure" in that proofs are
excluded. However, whenever a stateﬁent is made for which a proof

is required, proper reference is given for the interested reader.
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PART I: MATHENATICAL BACKGROUND

CHAPTER 1: MATRICES

1.1 Definitions and Notation

An m x n (read m by n):matrix is an array of elements arranged
in m ;ows and n columns. For our purposes, the matrix elements Qill
be real numbers.

It is convenient to have .a method of designatigé a matrix element

by its position. Hence, by a..lwe shall mean the element in the

1]
Lt .th .
"1 B row and the "jth" column of matrix A.
Thus if A is the 3 x 4 matrix:
2 3 6 1
0 7 =2 11
-32 8 19 -4 '
allm2, a23=-2, a12"3, a32=8, a24=ll, etc. Note that a2375a32

where by "#" we mean "does not equal."

We say that the order of the above matrix is (3,4) since there
are three rows and four columns.

A submatrix of a givén matrix is a matrix obtained from the
original by deletingyany number of rows and/or columns. A few

submatrices of matrix A above are:



36 1 2 6 1 0 -2
_ _ : (0 7 -2 11 );
7 -2 11 0 -2 11 (_32 19>;
8 19 -4 ; -32 19 -4 ;
6\ .
-2 (6)
8 /;
19 /;

Equality of matrices. Let A and B both be m x n matrices

(i.e., they have the same order.) If the element in the i-th rc¢i/ and
j-th column of A is egual to the element in the i-th row and j-th

column of B for each element, we say that matrix A is egqual to matrix B.

Symbolically, A=b if and only if aij = bij for all i = 1,2,3,...,m

and for all j=1,2,3,...,m.

For real numbers a and b, by "a<b", we mean that real number g
is less than real number b. By "a<b", we mean that a is less than
or equal to b. That is, "a<{b" is true if either a<{b or a=b.

Hence it is true that:
2<C 3
-7
2< 3
5<5 although "5<5" is not true.

A

If the element in the i-th row and j~-th column of matrix A is

less than or equal to the element in the i-th row and j-th column

of matrix B for each pair of corresponding elements, we say that
matrix A is less than or equal to matrix B.
Symbolically, A<{B if and only if aifs;bij for all i=1,2,...,m

and for all j=1,2,...,n.



With the above definitions for comparing matrices, we have:

1 2 4§ 1 2 3
A= \e 7 -4) # \e 7 -4) = B

since al3=8#3=bl3.

M

since ay ~4#7—b and a —7#4 b .

S S I z)

ince 1£5, -3£0, 4£4, and 2 £6.

SN RN

since ngl.

1 -3 jé 100 20 17
A= =B
4 2 84 33 10

since A is 2 x 2 and B is 2 x 3 and, hence, they cannot be

>
1
N
(o) T o
~ON
1
(- VY )
.
1
(o
-] N
i .
N
it
o

i
os}

compared.
A = (L, -7, 2, 5) < (8, -3, 2,5) = B

By "a¥b", we mean that it is not true that a=b, and by “ajéb,"

that it is not true that a<lb.



1.2 Elementary Row Operations
Let A be the m x n matrixs

all a

12 13 1n
321 a22 a23‘.......a2n
a3l 832 a33.....f..a3n
aml am2 am3 ...... .famn

There are three types of elementary row operations which we may

perform on matrix A to obtain a new matrix. We may:

{1) Multiply any row by a real number cther than zero.
{2) Interchange any tWwo rows.
(3) Replace any ruw ky itself plus a multiple of some
other row.
{(Note that when we speak of multiplying a row by a real number,

we mean that each element in this row is multiplied by the given

1 6 =7 0

3 18 ~6 3

0 2 8 1

B = 1 6 -7 0
1 6 -2 1

0 2 8 1

/

|

number.)

Let A

= O
a N
t t
N oo~
TSI ]



I: 1.2
D= |1 6 -7 0

0 2 8 1

1 -2 =34 —3}

Matrix B is obtained from matrix A by performing an elementary row operaticn of
type (1) cn matrix A (i.e., we multiplied the second row of matrix A by 1/3)..

Matrrix C is obtained from matrix B by performing an elementary row operation of
type (2) on matrix B (i.e., we exchanged row 2 aud row 3.) Matrix D was obtained from
matrix C by performing an elementary row operation of type (3) on matrix C {i.e., we
replaced the third row in matrix C by itself plus (~4) times the second row),

If A and B are two m x n matrices such that matrix B is obtained from matrix A

through a series of elementary row operdtions, we say that A is row equivalent to B
«nd we write Aﬂ;B. Hence, from our above example, we have A~D,

It can be shown rather easily that if A~~B, then B~A. That is, if we can
start with matrix A and obtain matrix B through a seri¢s of elementary row opera-
Eions, then we can also start with matrix B end obtain matrix A through anothér
series of elementary row operations. The discussion is excluded here since it does

not relate to our objective. The interested reader is referred to Cullen, page 26.

A matrix is said to be in row reduced echelon form if it satisfies the follow-

ing four conditions:
(1) The first nonzero element in each row is "1".
(2) In any column containing the first nonzero elemen; of
some row, that element is the oniy nonzero element in

that column.



(3) The zero rows-—if any--come last.

{(4) wWhen the leading "1's" in the nonzero rows are connected

by a

brcocken line,

that line slopes down and to the right.

The followirg matrices are in row reduced echelon form:

10 1 0 0
o 11 [ o 1 o
o 0/:; \o o 1

In particular, we shall see matrices which resemble the last

D O O e
o O - O
(= = =

0 0 O
1 0 0
0 0 0
0 0 0
3 2 1
178 0
5 6 7

example above again in Part II.

row reduced echelon

1 0 0 1 5 0 1 0 0 1 0 2
0 2 0 0 1 0 3 2 1 0 0 3
0 o0 1/ \6 o 1 o0 0/; \o o 1 5

The point to be made here is that any matrix can be put in a

form:

o o o -

QO O

o o O O

o o o o

O = o O

6 0 0 4 5 0
6 0 0 9 6
0 0 0 6 -1
6 0 1 3 0 8/;

The following matrices are not in

unigue row reduced echelon form through a series of elementary row

operations

(Culleén,

page 60).

That is,

for any matrix, A, there

exists a unique matrix, B, (where B is in row reduced echelon form)

such that A~ B.

Examples:

/4

(1) Put the matrix! 1

\3

-10 -2
-2 1
3 -12

5
1
7

in row reduced echelon form.



4 =10 -2 5\ . /1 -2 1 1
Rearranging rows to
- -1 -9
& 2 : ol VA 10 =2 > place a "1" in a de-
-3 3 -12 7 k3 3 -12 7 sired position.

Replacing the szcond
row by itself plus
{(-4) times the first.

-2 1 1
-2 -6 1 Replacing the third row

YR

w O

{ ]

w NN

I i

ooy b

no

NC
\\\N"//

by itself plus three
-3 -9 10 times the first.

Multiplying the second rcw
by (-1/2) to obtain another
"1" in a desired position.

1 3 -1/2
10

Replacing the first row
by itself plus two
times the second.

1 3 =1/2

0 0 17/2 times the second.

i
[P

}
O

o 7 0
_ Replacing the third row
1 3 l/;:> by itself plus three

Multiplying the third row
by 2/17 to obtain another
"1% in a desired position.

-1/2

S
/S e
O O
O W g
2 o
O



1:
1 7 0
. keplacing the second row
A 0 1 3 0 by itself plus (1/2) times
0 0 0 1 the thixd.
3 2 ‘
(2) Put the matrix! 4 1 jin row reduced echelcn form.
1 - 0
3 D 1 -1 o) /1 -1 o /1 -1 o
4 7 1 3 1 2 g4 0 4 2 1~10 1 1/2
- 0 4 7 1 0 11 1 0 11 1
~ N 7
//i 0 1/ 1 0 0 1 0 0
VAt 1 1/2 0 1 0 ~f 0 1 4]
Q o -1/2/\0 o -2/ \0o 0o 1

Here we have condensed our vicrk by performing several operations
in each step.

1

By the rarnk of a matrix, we shall mean the number on nonzero rows

in its row reduced echelon form.*

1 3 7 2
Hence, the rank of the 3 x 4 matrix|{-2 1 0 5 is two since

1 10 21 1y

it can be shown that its row reduced echelon form is:
1 0 1 -=-13/7

0 1 2 S/7
0 0 0 0

* Tn rnost texts, this is stated as the result of another definition
of matrix rank. .



1.3 Determinant of a Sguare Matrix

In the expression: (2) (4)(8)+(6)(9)~(20)(17)(~8)(5), t'ere are
three terms. The first term contains three factors; the second term
contains two factors; and the third term contains four factors.

A square matrix is a matrix with the same number of rows and

columns (i.e., m=n) .

For every square matrix, A, there exists a real number called

the determinant of A (written }al).

By definition, if A is the n x n square matrix

v
[}

11 12 813 ..... ...aln’

asy ay, Bpgeeeeaneedyy

azy a3, R EE L P
a.y anz éan ....... énn 7
lA] = the sum of all possible terms of the form

aliaZja3k""'°"anr

where each term is preceded by an appropriate sign (+ or -) which
is determined by a specific rule (Hadley, page 30). That is, each
term contains n factors. The only restriction is that each term
must contain one and only one factor from each row and one and only

one factor from each column. Thus, if A is the 4 x 4 square matrix:

1 2 3 7
-8 4 1 0
1 9 2 6
-10 0 3 5



-10~

A would contain the following terms: (1) {4) (2) {(5), (3)(-8)(6) (0),
(2) (0) (2) (-10), etc. but would not contain (3) (4) (2) (5) since 3 and 2
are both in the same column.

If we choose the first factor of each term from the first row and
the second factor from the second row, etc., each term will have one and
only one factor from each row. If we then discretely select each
factor so that no term has more than one factor from each column, we
will have listed each term in }Ai

Since there are four choices for the first factor of a term and
three choices for the second factor (after the first has been selected)
and two choices for the third factor (after the first two have béen selected)

J}and only one choice for the fourth factor (after the first three have
been chosen), there will be 4! = (4)(3)(2)(l) = 24 terms ian[.

The reaaer may be familiar with certain "tricks" for evaluétingv

the determinant of a 2 ¥ 2 or a 3 x 3 matrix.

For example, if C= 8 ;) and B=| -8 4 1
\ 1 9 2 ,

|c|
2|

(1) (4)-(-8) (2)=20

DS

i

1
®
>

+ + o+

i

(l)(4)(2)+(2)(l)(l)+(3)(—8)(9)*(1)(4)(3)-(9)(1)(l)-(2)(f8)(2)

#

=195
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It should be kept in mind, however, that these "tricks" for evaluating
a determinant are a result of the definition (page 9). The problem
arises when one tries to extend these techniques to evaluate a deter-

minant of matrix A where A is the matrix above.

1 2 3 7

-8 4 1 0

Example: A = 1. 9 2 6
-10 O 3 5

Copying the first three columns to the right of the determinant

and attempting to use our previous tricks, we would have:

= (1) (4)(2) (5)+(2) (1) (6) (-10)+(3) (0) (1) (0)+(7) (-8) (9) (3)
=(=10) (9) (1) (7) - (0) (2) (0) (1) -(3) (6) (~8) (2)=(5) (1) (4)(3)

We see that we obtain only eight of the twenty-four terms in the
sum by this technique. In particular, the term (3) (-8) (6) (0) {which we
previously agreed to include) is missing-—along with the pther fifteen
terms which.should be included in the sum according to the definition of
a determinant. We therefore conclude that the "tricks" cited above
which work when evaluating a 2 x 2 or a 3 x 3 determinant cannot be
used when evaluating a determinant of order greater than three.

Fortunately, however, we do not have to resort to the definition

every time we evaluate a determinant of order four or more.
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A scheme is a?ailable which enables us to evaluate the determiﬁant
of any square matrix A.

Let A be an n x n matrix. Recall that aij is the element in the
i-th row and the j~th column of A. Denote by Aijthe submatrix of A
which is obtained by deleting the i-th row and j-th column. Hence
Aijis an n-1 x n-1 matrix. Aij is called the minor of element aij'

(—l)l+J‘Aij is a real number and is called the cofactor of element

a.
ij
For a nonnegative integer (whole number) p,

1, if p is even

Recall that (-1)P = {-1, if p is odd

It can be shown (Cullen, page 62) that if we choose a row of
matrix A (i.e., fix i), then'lA’ can bhe evaluated as follows:

Al = S )it A | = (_1)141 Al o1y it? Al
l I" %;;1 235 ] ijl = 231 B4yt 3i2 l iz

eont (-l)l+na for any i=l,2,...

. [A. I
in in

Likewise, we can choose any column of matrix A {i.e. fix j).

We would then have:

n v e
- + .
'Al = ?;1 (-1t jaij lAij’ .. for any j=1,2,...,n

Formally stated, we can evaluate the determinant of matrix A

through expansion by minors of row i or through expansion by minors
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of column j.

"Example: Let A be the 4 x 4 matrix cited above (page 11). Let us

evaluate !Al through expansion by minors of the second column.

3+2 4+2

|a] = (-1)“2(2)’A12]+ 022 [ag,| v Do) [ag) v 1P

24

Here IAlzl ‘ 22; and ’A32! are 3 x 3 determinants and can be
evaluated by the trlck discussed before which is valid for 2 x 2 and 3 x 3
determinants. If we choose, however, we may evaluate the 3 x 3

. " . . .
determinants lAlZl ,|A22l., and!A32‘ -hrough expansion by minors of
any of their three rows or columns, Note that we need not bother

o . _ , . 412 _
evaluatlng 'A42‘ 51nce1&4%—0. That is, (-1) (0) 4A42‘— 0 no matter
what !A4zlls.

It is therefore gadvisable to evaluate a determinant through
minors -of the row or column which contains the most zeros.
Returning to the above expansion,; since

12l = -1, [Azzl = -42, and ‘A32‘ = 27, we have:
-(2) (-1)+(4) (~-42)-(9) (27)+0 = =325

s
fl
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1.4 Addition and Multiplication of Matrices

Let A and B be n x m matrices

a12 ........ aln
e v eesren a

Example: A = .22 .2n

Bigerereces mnn

bl2 ...... ..bln
Donesesas . o)

B = .22 .2n

bm2" ...... bmn

We define the sum, A + B, to be the m x n matrix:

i

dlZ”"""dln
s D a

D = ‘22 .2n
d d

m2° " %

where dij= a. .+ bij' That is, to add two matrices, we merely add

1j
1+ 0+11 740
2+{-6) (-3)+1 8+2

corresponding elements.
_ 1L 0 7 9 11 ¢
Example: 2 =3 g/ tlog 1 2 =
10 11 7
T \-4 -2 10
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I:
Note that we only define the addition of two matrices which have
! 3N 5 6
the same order. Hence 3 4 + 7 8 is meaningless.
9 10
Now let A be an m x n matrix and B an n_x ¢ matrix. That is, the
number of coluins in A is equal to the number of rows in B,
P R R AN bll b12 ..... ...blq
Qonessssseald b b,ecesesesd
Example: A .22 _2n B = .21 .22 .Zq
amz...‘..'...amn ; bnl bn2 ...... ..bnq

We define the product, AB, to be the m x g matrix:

Clz........clq

022...- ..A.-Czq

() evevce
() svvenes

e ® s e s 0

m2 mg

n

where 4, = %—-1 a3Pry = 331Py4% @5aPogte et 350Pn5

. That is, to
obtain the element in the i-th row and j-th column of the product

matrix, we take the i-th row of A and the j-th column of B and add

corresponding elements.



~
H
T X ¢
9 (T-)Y (S)+(€) (€)+T) (0)+(2) (T)
L (T=) (T)+(€) (=) +(T) (9)+(2) (¥)
T X ¥ v X ¢
H.l
£
T S £ o0 T
4 T z= 9 v) (2
v X ¢
T€E 8T - 0T\ _
. 0 ¥ 6- ¢
gmed
{
(TY(T)+(9) () +(2) (£) (Z) (D) + () (w)+(0) (€) (S (T)+ (=) (P)+(T) (€) (0) (T)+(T) (P)+(2) (€)
ﬂdamuvim:ovimiﬂ (Z) (Z=)+(¥) (0)+(0) (T) (S) (z=)+(€=) (0)+(T) (T) (0) (z=)+ (1) (0)+(2) (T)
v X € T X2
1 7 S ©
9 ¥ €= T T v ¢
z 0 1 2 z- 0 1) (D
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(3) (8 2 =4 3 /1
0
2
5
l x 4 4 x 1
= 68)(l)+(2)(D)+(-4)(2)+(3)(5)) = (15)
1 x 1

the that we define matrix multiplication only if the number of
columns in the left matrix is equal to the number of rows in the right
matrix. Hence if A and B are the matrices of example (1), BA is
meaningless since there are four columns in the left matrix, B, but
two rows in the right matrix, A.

Hence we see that AB # BA since AB was the 2 x 4 product matrix of
example (1), while BA is not even defined,

It may happen that both AB and BA are defined. This will be the
case if A and B are both square matrices of the same order.

{
Example:

2 1 3 1 5 0
Let A = g -2 5 B = 2 3 1
1 3 0 /; 6 -1 4

Since A is 3 x 3 and B is 3 x 3, AB is 3 x 3 and for the same reason,
BA is 3 x 3. We have:

(2) (1) +(1) (2) +(3) (0) (2) (5)+(1) (3)+(3) (-1) (2) (0)+(1) (L) +(3) (
(0) (1) +(~2) (2)+(5) (0)  (0) (5)+(-2) (3)+(5) (1) (0) (0)+(~2) (1)+(5)
(1) (1)+(3) (2) +(0) (0) (1) (5)+(3) (3)+(0) (-1) (1) (0)+(3) (1) +(0) (

AB

4 10 13
-4 ~11 18
7 14 3

an
(4)
4)

/
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(1) (2)+(5) (0) +(0) (1) (1) (1)+(5) (=2)+(0) (3) (1) (3)+(5) (5)+(0) (0)
(2) (2)+(3) (0) . 1) (1) (2) (L) +(3) (-2)+(1) (3) (2) (3)+(3) (5)+(1) (0)
(0) (2) +(~1) (0)+(4) (1) (0) (1) +(-1) (-2} +(4) (3) (0) (3)+(-1) (5)+(4) (0)

BA

it

2 -9 28
= 5 -1 21
4 14 -5

Note that in this case also, we have AB # BA. Because of this; we

A: say that "matrix multiplication is not commutative".

B: However, matrix multiplication is associative. By this we mean
that if A is an m x n matrix; B is an n x g matrix; and C is a g X r
mattix, then

(AB)C = A(BC)
That is, we will obtain equal matrices by either of the following
brocedures:

(1) Multiply the m x n matrix A by the n x g matrix B on the
right to obtain the m x g matrix AB. Then multiply the matrix AB on the
right by the g x r matrix C to obtain the m x r matrix (AB)C.

{2) Multiply the n x g matrix B on the right by the g x r
matrix.C to obtain the n x r matrix BC. Then multiply the matrix BC
on the left by the m x n matric A to obtain the m x r matrix A(EC).

C: We also have that A=B implies AC=BC and CA=CB for any matrices

C and D for which the indicated multiplication is defined.
1.5 The Inverse of a Square Matrix

A square matrix of the form
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0 {3 S
0 1 0cevev...0
0 0 loeeons.s0

0 0 0.cvoeeeeal
{(i.e., All elements cn the diagonal are "1" while all other elements

are "0".) is called an identity matrix and denoted by I (or by I if

we wish to specify that it is n x n).
Note that if A is any square n x n matrix and I is the n x n

identity matrix, then AI = IA =.A.



£2) (1) +(5) (0)+(2-) (0)

(L) (0)+(S) (T)+(2=) (0)

L) (0)+(S) (0)+(2~) {T)
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(T) (L) +(0) {8)+(0) (0)
(T) {(§)+(0) (9=)+(0) (£)
(@) (2-1+(0) (1) +(0) (7)

(8) (T} +(9-) (0)+(T) (0)
(8) (0)+(9=) (T)+(T) (0)
(8) (0)+(9-) (0)+(T) (T}

(0) €LY+ (1) (8)+(0) (0)
(0) (S)+(T) (9-)+{0) (£)
(0) (2=)+(T) (T)+(0) (P)

L 8 0
S 9- €
- T [/

(0) (1) +(€) (0)+(¥) (0)
(0) (0)+(£) (T)+(¥) (0)
(0) (0)+(€) (0)+(p) (T)

L 8 0
] 9- ¢
- 1 14

(0) (L +(0) (8)+(T) (Q)
(0) {(S)Y+(0) (9=)Y+(T) (£)

(0) (Z=)+(0) (T)+ (1) (})/

1
0
0

0
T
0

L 8 0
Uy \\M 9- £ |XTI3BW € X ¢
//m. T ¢

< Oy

—~ o o

oy

o o o~
o = O

aq Yy 397

o

¥I

- O
[

DS TMONTT

o

Iv

< ™
i

:o1dwexg
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Given a square matrix A. , two questions arise:
(1) Is there a square matrix B (of the same order) such
that AB = I? o
"(2) If such a matrix exists, how do we calculate its elements?
If such a matrix, B, exists, we say that A is nonsingular and call

B the inverse of A. We designate this by writing B = A—l.

It can be shown that if B = 2”1l exists, then AB=BA=I
If no such B exists, we say that A is singular.

It can be shown (Cullens; page 74) that a condition which implies
that A‘l exists and which is implied by the existence of A_l is that

|a} # 0

* * * Note that we talk about A"l ang IA“only for square matrices A.* * *

If we have an n x n square matrix A for which we have decided that there
exists an inverse B (i.e., we have found that ]At# 0 )}, we proceed to

contruct B as follows:

b,yjeeeee...b

/b1y Pia 1n
b b ‘Ilhtflcb
B = .21 .22 .2n
by boe.... cesb
(-1)”3‘1&.i B =
where bi' = ¥ . We recall that Ajiis the submatrix of A

] Y
obtained by deleting the j-th row and the i~th columm.

Hence, bij' the element in the i-th row and j-th column of the
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inverse of A, is the cofactor of aji’ the element in the j-th row and

i-th column of 72, divided by the determinant of A (which is not zero).

Example:
2
Let A = (-1
3 4 241 3+1
Since !Al = (-—1)1+l(2) + (-1 (~-1) + (-1)y (9
5 0
5 0] .
= 2(0-20) + (0-5) + O
= —45 7! 0 r l
we know that there exists a 3 x 3 matrix, B, such that AB=BA=I =} 0
0

That is, we know that A-l-exists. In the above evaluation oflA},

we expanded by minors of the first column.

We proceed to calculate A,. for i,j = 1,2,3. We have:
; ij 3
4 i
All = = 0-20 = -20
-1 4
Alz = 0 = 0-0 = 0
-1
A13 = 0 5 = -5-0 = =5
0 1
;1 =1ls o} = 03 = -3
2 1
2yl = lo of 7 00 =0
2 0
A23 = 0 5 = 10-0 = 10

\!--'OO_
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-1 |a

Py

‘Azzl

(=1) (10)
-45

-1/9

2/9

3+1
(-1) A3ll

21’

ial

(—l)3+2 A

52l

Y

(-1) 3+3 lABJ

N ./

(-3)

[3
~

(=1) (9)
-45

(6)
-45

1715\
1/5

-2/15 )



T 0
0 1 =
0

0

0

1/
T)

(0) (ST/z-)+(¥) (6/2)+(T) (6/T) () (sT/2-)+(€) (6/2)+(0) (6/T) onAmH\N|V+AH|VAm\NV+ANVAm\WHHv

0

(0) (S/T)+(¥%) (0)+(T) (0) (§) (S/T)+(E) (0)+(0) (0) (0) (S/T)+(T-) (0) +(2) (0) | =¥  V=VE
(0) (ST/T)+(¥) (6/T-)+(T) (6/7) (8) (ST/T)+(€) (6/T-)+(0) (6/%) (0) (ST/T)+(T-) (6/T-)+(2) (6/7)
1 DS TMONTIN
<
o
i
T 0 O
o T 0 |~
0 0 T
(ST/2~) (0)+(S/T) () +(ST/T) (0) (6/2) (0)+(0) (5)+(6/1-) (0) (6/1) (0)+{0) (S)+(6/%) (0)
(ST/2-) (1) +(S/T) (E)+(ST/T) (T-)  (6/2) (1) +(0) (E)+(6/T-) (T-)  (6/T) (¥)+(0) (€)+(6/¥) (I~) = VY=
(sT/2~) (T)+(S/T) {0)+(ST/T) (2) (6/2) (T)+(0) (0)+(6/T-) (2) (6/T) (T)+(0) (0)+(6/%) (2)

3eyy 930t
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Needless to say, the construction of A"t

for a large matrix A
would be a tedious task. The utilization of an electronic computer
when working with a problem which entailed this task would prove in-

valuable.
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CHAPTER 2: SYSTEMS OF SIMULTANEQUS LINEAR EQUATIONS

2.1 Definitions

A linear equation has the form:

a.x, + a.x. +'ax =D
171 2

where ayr @7 Agyeceaenns roay and b are constants, while Xyr Xyr Xgreeon
-e--s ¥, are the "unknowns" or variables. By a solution to the above

SO

linear equation, we shall mean an n x.l matrix | such that the

above equation is true i1f we substitute Sy for Xyr 8, for Xyt etc,

Example: 1 is a solution to the linear equation:
-6
4xl + 3x2 - 7x3 + 2x4 = 7
3
since 4(5) + 3(2) - 7(1) + 2(-6) = 7. DNote that"0 is.also a solution.
-4

Let us now consider the following system of simultaneous linear

equations:
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2xl + x2 + 2x3 = 3
Xq + 3x2 + 2x3 = -1
=%y ¥ 2x2 - X3 = -4

What does it mean to "solve" such a system? By a solution to

s s
1

this system, we shall mean a 3 x 1 matrix 'S, | such that S,

°3 °3

is a solution to each of the three linear equations in the system.
(-5

tience, [-2 |is not a solution to the system even though it

e (2
satisfies the second and third eguations since it does not satisfy
the first.

At this point, we do not know whether or not the above system
has a solution; and if it does, whether it has one or many. That
is, a system of simuiltaneous linear equations may have:

(1) no solutions
(2) one solution

(3) many solutions

2.2 Finding a Solution
Two systems of simultaneous linear equations are said to be

equivalent if they save the same solutions.
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Thus, when faced with finding the solution or solutions (if any
exists ) of a system of simultaneous linear eqguations, our objective will
be to obtain an equivalent system (i.e., cne with the same solutions as the

original}) but which is easier to solve.

Given the general system of simultaneous linear equations:

allxl + alzx2 + al3x3 et reenon + alnxn = bl
alel + a22x2 + a23x3 Foivenoaas + a2 xn = b2
aj)¥y + By5%, + a34%X4 Feresneaat az X, = b3
amlxl + amzx2 + am3x3 Fevreesoot amnxn = bm

an equivalent system will be obtained if we:
- ‘(l) Interéhange.any two equations.
{2) Multiply both sides ofi any equation by a nonzero constant.
{3) Replace any equation by itself plus some multiple of
any other equation.
The first two assertions are easy enough to justify; the third
‘requires only a little more contemplation.
Let us use these three tricks repeatedly to obtain a "convenient"
system of simultaneous linear equations which is equivalent to cur

original system on page 27.

2Xl + X, + 2x3 = 3
{System #1; Original) x, 3x2 + 2x3 = ~1
%y 2x2 - Xy = -4
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Let us first interchange the first and second equations to obtain
the equivalent system:
%y + 3x2 + 2x3 = -1
{System #2) 2%, + X, + 2x3 = -3
X + 2x2 - Xg = -4
Let us now replace the second equation by itself .plus (-2) times

the first equation to obtain the equivalent system:

.xl + 3x2 + 2x3 = -1
(system #3) | - Sx2 - 2x3 = 5
=Xyt 2%, - X3 = -4

Let us now replace the third equation in this system by itself

pPlus one times the first equation to obtain the equivalent systen:

xq + 3x2 + 2x3 = ~1
(System #4) - 5%, - 2x3 = 5
5x2 + Xy = -5

Let us now multiply the second equation by (-1/5) to obtain
the equivalent system:

+ 3x., + 2x, = ~1

*1 2 3
(System #5) X, +2/5x3= =1
5x2 + %3 = -5

Let us now replace the first equation by itself plus (-3) times

.the second equation to obtain the eguivalent system:

3 + 4/5x3 = 2
(System #6) X, + 2/5x3 = -1
5x, + X, = =5

2 3



Let us now replace the third ecuation by itself plus (~5) times

the second to obtain the eguivalent system:

3 + 4/5 x

(System #7) X, + 2/5 x

2 3

- Xy

Let us now multiply the third equation
equivalent system:

+ 4/5 X,

(System #8) x, + 2/5 x

2 3

X3

Let us now replace the seccnd equation

3

by itself plus (-2/5)

%imes the third to obtain the eguivalent system:

Xl + 4/5 x3

(System #9) X

%3

Let us now replace the first equation by -itself plus (-4/5)

times the third to obtain the eguivalent system:

X1

(System #10) X

X

3

= 2

= -1

=0

We now have a system of simultaneous linear eguations for which

X1

2
%3

it it easy to find a solution--namely x

2 .
= |3 (i.e. xl=2, X
0 x.,=0)

3

2

=] ’
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Since we are assured that System #10 is equivalent to cur briginal

2

system, we know that’ —15\ is thée one and only solution to :
J

2xl + X, + 2x3 = 3
Xl + 3x2 + 2x3 = -]
—x, * 2x2 - X3 = -4

2.3 The Matrix of Coefficients and the Augmented Matrix

Consider agailn the general system of m simultaneous linear

equations in n unknowns:

allxl + alzxz + a13x3 Forrneneot alnxn = bl
aZle + a22x2 + a23x3 b P .ot aann = b2
: ‘_

amlxl + am2x2 + am3x3 +,..5....+ amnxn = bm

The m X n matrix

a21 By,  Bpgeeescens a,,
\ éml a s Azt @nn

is called the matrix of coefficients for this system.

The m x n+l (read: m by (n plus one} ) matrix



-3D -

a3y 137 e a1, by
as, a23 ........ a, b2
am2 am3 ....... .amn bm

is called the augmented matrix of this system.

Given a system of simultaneous linear equations, it is a simple
matter to construct the augmented matrix which represents this system.

For example, the system

]
N

3xl + 5x2 - 7x3 +. x4

2x2 + X3 - 8x4 = 20

+ ~x4 =0

1 X2
is represented by the augnmented matrix

3 05 -7 1|2
0 2 1 -8 | 20
6 -1 0 1 1}o0

where we include the bar merely to remind ourselvegAthat the elements to
the left of the bar are the coefficients of the unknowns in our system,
while the elements to the right of the bar are the constants on the
right side of the equal signs in our systen.

Likewise, it is a simple matter to construct the system of
linear equations which corresponds to a giveﬂ augmented matrix.

Let us now look at the augmentéd matrices which revresent the
equivalent systems of simultaneous linear equations which we derived

from our original system §l(Section 2.2)
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2xl + x2 + 2x3 =. 3
xl + 3x2 + 2x3 = ~1
Xyt 2%, - Xy = -4

The augmented matrix of this system is

2 1 2] 3
1 3 2 {-1 )
1 2 -1{-4

Likewise the augmented matrices of the equivalent systems 2

through 10 are:

#2 1 03 21-1
2 2 3
-1 2 =11-4
#3 1 3 2]|-1
g -5 =2 5
-1 2 -11-4
#4 13 2]-1
0 -5 =2 5
0 5 11}1-5
#5 103 2 |-10
o 1 2/5|-1
0 1 5 -5
46 1 o 45| 2
0 1 2/5 -1
0 1 5 -5
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#7 4/5 2

2/5 | -

o e O
§
f—d
Q_/

2/5 | -

#9 1 0 4/5
0 0 -
0 0 1

0

1
0
0
#8 /1 0 4/5
0 1
0

o
[
U

et

U

He
[
(o]
oD
~ Q
= o O
!
U

The system which corresponds to our final matrix 1is

lxl + Ox2 + Ox3 = 2 | Xy = 2
Ox2 + 1x2 + Ox3 = =1 or X, = -1
0xy + O0x, + 1x, = 0 x3 =0
Xy 2
which we trivially solve to obtain: X, =] -1
Xq Y

Hence we see that to solve a syc*em of simultaneous linear
equations, we merely construct its augmented matrix and then proceed
to put this matrix in its row reduced echelon form. We then construct
the system which corresponds to our final matrix and "solve®" this system.

Since the system which we construct from our final matrix will be
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equivalent to our original system, we will have "solved our original
system as well.

Examples:

(1) Solve: - -
xy X, + Xq 7
3xl + 2x.2 - x3 = -4
2xl + X, + 2x3 = 11
We construct the augmehted matrix 1o-1 1 7
3 2 -1 -4
2 1 2 11

and proceed to put it in its row reduced echelon form.
1 -1 1 7

3 2 -1 |-4 N

~4/5

1
0
0
e
0
0
i o0 15| 2
N 0 1 -4/5 |-5
N0 0 12/5| i2
1 A
0 ‘
0

i
W {ad [l
(o) [l
i |
U

0 1/5

i -4/5
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1

(o]
D

We now construct the system represented by our final matrix,

assured that it will be equivalent to our original system.

Xy = 1
X, = -1
X3 = 5
We solve this system trivially to obtain x; = 1, X, = -1, X3 =5 or
X, 1N\
Xy = -1
Xy 5
{2) Solve: Xy + 2x2 + 3x3 + Xy = 3
3xl + 2x2 + X4 + Xy = 7
2x2 + 4x3 + Xy = i
xl + x2 + Xq + x4 = 4

Constructing the augmented matrix for this system and then

putting it in its row reduced echelon form, we have:

O W
(R S I N
o e W
S
o W

1 2 3 3
g ~1 -2 1
0 2 4 1
0
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/1
\/\ 0 1
' 0 2
0 -4 -8
1 0 -1
0o 1 2
A 6 0 0
0o 0 0
1 0 -1
0o 1 2
A 0 0
0 0 0

The system which corresponds to our final matrix is

lxl + Ox2 ~'lx3 + Ox4 = 2
Oxl + lxz + 2x34+ 0x4.= -1

Oxl + 0x2 + Ox3 + lx4 = 3

Oxl + Ox2 + Ox3 + Ox4 = 0

or %, - x, = 2
x, + 2x3 = -1

Xy = 3

=t, we have

3

If we let x, take on any value, say Xq

==]14+2t, x3=t, and x4=3. That is for any value of t,

2 + t
-1 + 2t

L

0

*1

o w

=2+t,



is a solution to our system.

for

for

for

t=0, we

t=1, we

t=-7/8,

Solve:
2%

3x

Constructing the

obtain the solution (/
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For example,

obtain the solution

we obtain

1
1

+ 4x2

+ 5x, +

+

2%

Tx

augmented matrix for this example

3

3

- 2%

4

+ 4x

4

X

5

3

1

1

3
(ii

the solution _

+ 425

2
1
0
3

9
1
7

3

/
/

4
/8

10

into i1ts row reduced echelon form we have:

2
7

-2 4 [10
\f‘\
4 -1 3

(A

VA

and putting

The system which corresponds to our final matrix is:

X

1

X

2

+ 9x3 + 13x

4x

3

7%

4

4

- 12x

+

Tx

5

5

~-19

12

-12

o]
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If we let'x3, Xyr and Xg 1 take on any values, say X*X.,=t, X =u,

3
and X =v, we cbtain a solution to our system. That is
~19 ~ 9t - 13u + 12v
12 + 4t + Tu -~ 7Tv
t

u

v

is a solution to our system for any values t, u, and v.

In the previous three examples, we have seen that a system
of simultanecus linear equations may have one solution or many solutions.

Now consider the following system.

(4) Solve: :
xl - 2x2 + x3 = 1
Ale - 5x2 - X, =
Xy tox, - 4x3 =

We construct the augmented matrix and proceed to put it in its

row reduced echelon form:

1 -2 1 }1
2 -5 -1 5 S 0 -1 -3
-1 1 -4 }3 0 -1 -3
1

et
i

N

-

o
i
N
w
{
w

'—J

~
i

(S
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Our final matrix corresponds to the system:

lxl + 0x, + 7x, = 0

2 3
Oxl + 1x2.+ 3x3 = 0
Oxl + 0X2,+ Ox3 =1

A look at the last equation of this system tells us that this
system (and hence our original systém) has no solution. That is,

there are no real numbers Xl' xz,.and x3 such that

+0x, =1

Ox, + OX2 3

.

‘3 Let us take a closer look at the matrices involved in this
éYstem. For our matrix of coefficienté and its row reduced echelon

form, we have

1 -2 1 1 0 7
I 2 -5 -1 ) VA o 1 3
-1 1 -4 o 0 o

while for our augmented matrix and its row reduced echelon form, we have

1 -2 1 1 1 o 7 0
2 -5 -1 5 e o 1 3 0
-1 1 -4 3 0o 0 o 1

Hence,by examining the row reduced echelon forms of the matrix
of coefficients and the .augmented matrix, we see that:
The rank of the matrix of coefficients = 2

# The rank of the augmented matrix = 3.
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This is true in general. That is, it can bé shown (Cullen, page 55)

that:
* * * A gystem of simultaneous linear equations has at least one
solution if and only if the rank of the matrix of coefficients is

equal to the rank of the augmented matrix. * * ¥

2.4 Matrix Representation

Consider the systémf

3x, + 2x, + X3 - X, +_7x5 = 10
Xy~ Xy - 4x3 + Xg = 8
—2xl + X, + 5x3 + Xy ~ x5 = 15

We may express this system of simultaneous linear equations in

matrix notation as

v

b

where X is the 5 x 1 matrix of "unknowns" A is the matrix

Xon

Lo
Ul e W N

3 2 1 -1 7
of coefficients 1 -1 -4 0 1 and B is the 3 x 1 matrix
-2 1 5 1 -1 /;
10
of right-hand side constants 8
15/ .

That is, with the above description of A, X, and B, the matrix
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equation AX=B becomes:

]

1

i 2 1 -1 7 X, 10

1 -1 -4 o0 1 Xy = 8

-2 1 5 1 -1 X, 15
X5

Looking at the left side of the above equation, note that we
have a 3 x 5 matrix times a 5 x 1 matrix (with the 3 x 5 matrix as
the left factor and the 5 x 1 matrix as the right factor). A 3 x 5
matrix times a 5 x 1 matrix (in that order) yields a 3 x 1 matrix
which is indeed what we have on the right side of the equal sign.
Hence, the above matrix equation makes sense.

Multipiying the 3 x 5 matrix A times the 5 x 1 matfix X to

cbtain the 3 x 1 matrix AX, we have:

'(3xl + 2x2 toxg - X, +'7x5)
AX = ' (xl - X, - 4x3 + xS)
(—2xl + x; + Sx3 +x, - XS)
10
which is to be equal to the 3 x 1 matrix 8
15

Recall that for two matrices to be equal, their corresponding

elements must be equal. Hence, we must have:

3x1 + 2x2 + X3 = X, + 7x5 = 10
xl - Xy - 4x3 + x5 = 8
-2xl + X, + Sx3 + Ry = Rg = 15

which 1is our original system.
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b

Consider again the general system of m simultanecus linear

equations in n unknown:

a

llxl + a12*2 R alnxn = bl
alel + a22x2 Forewoonot aZan = b2
amlxl +,am2x2 Foeienwaasat amnxn = bm

This system written in matrix notation is:
all al2 al3""""aln xl bl
a21 a5, a23f.......a2n X, bz
an a s am3 ...... ced %, bm

or AX = B, where A is the m x n, matrix of coefficients. X is
the n x 1 matrix of unknown and B is the m'x 1 matrix of right-hand side
constants.

In the terminology to be introduced in the next chapter, we shall

the solution vector to the above system.

Now suppose that our system of linear equation has the same

number of equation as unknowns. That is, our'System has the form:

allxl + a12x2‘+..,...7.+ alnxn = bl

alel + a22x2 Feoeseasat a2nx2 = b2

N ereene

LS
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Expressing this in matrix notation, we have:
AX = B
where A is the n x n matrix of coefficients; X is the n x 1 solution
matrix (or vector); and B is the n x 1 matrix (or vector) whose
elemehts are the right-hand side constants of the system.

The significant point here is that A is square and hence we

may talk about At and A . If |[a| # 0, by 1.5B, At exists.
Since AX = B
we have alax) =a"t s by 1.4C
which implies a7 la)x = a7l B by 1.4B
from which we have (1)x = a™% B
which in turn implies that x =a"1g
Recall that A being n x n implies that Al isnxn . Since a Tt

is n xn and B is n x 1, A—l B is n x 1. This is what we expected
since X is n x 1 .

Hence we see that if our : sstem of simultaneous linear eguation in
n unknowns is such that A, the matrix of coefficients, is square,
and if we further have that IAl # 0 (which will imply thét A_'l exists),

then we can be sure that our system will have a unigque solution

*1
x=[ %2
X
. n
which will be given by
X =a1B

where B is as aefined before.
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Example:

+

Consider the system of three equations in three unknowns:

2xl + x3 = 4
Xy + 3x2 + 4x3 = 6
5x = -10

2

Writing this system in matrix notation, we have AX = B.

A, the matrix of coefficients for this system is

2 0 1

-1 3 4

0 5 0
4
while B = 6
-10

In section 1.5, we found that lA‘ # 0. Hence we have a unique
solution to this system given by X = A—l B. Again in 1.5, we found that

4/9 =-1/9  1/15

At = 0 0 1/5
1/9 2/9 =2/15
A 4/9 -1/9  1/15\ 4
Hence, X = 0. 0 1/5 6
1/9 2/9 -=2/15 ~-10
= 16/9 - 6/9 -10/15
—10/5
4/9 +12/9 +20/15
4/9
= |-2
That is, x, = 4/9; X, = = 2; = 28/9

1
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Our previous method for solving this system would be to construct the

augmented matrix and then put it in its row reduced echelon form.

would have :

2 0 1 4 L1
-1 3 6 2
0 s -10

0

P I

Do

We

6
4
-10

-10

)
:
5
5

2

28/9

4/

28/9
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Hence a system equivalent to our original one is:

.Xl = 4/9

X = =2

X3

i

28/9

which we trivially solve to obtain the solution matrix (or vector)

N\
Xy 4/9
X = X, = -2
X4 28/9
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CHAPTER 3: VECTOR SPACES

3.1 Definitions

Although the mathematical concept of a vector‘SPace is very abstract,
we shall haVe need of only a rather narrow interprefation of this
concept.

Indeed, rigorously speaking, our definition of "vector space” will
be merely an example of this abstract concept.

For the purposes of this manual, the following definition will

suffice.

By an n-dimensional vector space we shall mean the set of all n x 1

v
v

matrices V = 2 where, as before, vl, v2, ..... ,vn are any real

v
n
i

numbers. We shall refer to such a column matrix as an n-dimensional

vector and shall call A the i-th component of V.

We define multiplication of a vector, V, by a real number, ¢, to

yield a vector cV as follows:

v cv
1
v cv
2 2
cV = ¢ . = .
v cv.
n n

The definition of X + Y for vectors X and Y follows from the defini-
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X1 RS
%2 Yy
tion of matrix addition. That is, if X = . and ¥ = .
y
n n
Wty y
. x2 + y2
then the vector X + ¥ = .
X, ty, /.

We define X .Y, the "dot product" of two n—dimensional vector:

X and Y as follows

Xe¥ = XY, + XY, + x3y3 oo iecat X Yo

That is, the dot product of two vectors is a real number. Note that this

is not the same as matrix multiplieation.

Indeed the matrix product, X x Y, of the two vectors (i.e. 1l xn

matrices) is not even defined since the number of columns in X is equal

to n while the number of rows in Y is equal to one.

Examples:

Let X

i
<
i

¢ = 3 then

S W U

-
[4

We shall say that the k-n-dimensional vectors Vi Vo V3,...., Vi

are linearly dependent if there exists k real numbers Cyr Cyr Cqu
such that:

cl‘Vl + C2V2 + c3V3 +f.......+ cka = 0
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where by the "0" on the right-hand side we mean the vector whose n com-
ponents are all zero.
The expression on the left side of the equal sign is called a

linear combination of the vectors Vl' \Y

PYERERRE ¢ Yy -
Note that the above vector equation makes sense since on. the right,

0 is an n- dimensional vector; and on the left, the Vi being n-dimensional

vectors implies that each ciVi is an n~dimensional vector which in turn
implies that their sum is an n-dimensional vector. Hence we have an n-
dimensional vector represented on each side of the equal sign.

We say that the K vectors Vl’ Vz""*"' Vk are linearly_independent

if they are not linearly dependent. This implies the following equivalent

definition.
The k vectors Vl, V2) ...... R Vk are linearly independent if an ecqua-
tion of the form
. = . =31 : y
VvV, F ooV, Fene ceh oV Y (0: an n=dimensional vector)
implies that Cy = Cy = vunennn =c =0 (0: .a real number)

Examples:

1 4 10
(1) -1 ), \2/, 29 {14

are linearly dependent since there exists real numbers, 6, -4, and 1

()00
(- ) 0-0)-

such that

-+
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The reader may wonder how the numbers 6, -4, and 1 were determined.

c., such that

Keep in mind that we were looking for real numbers c o1 C3

()= () ()

where the 0 on the right-hand side represents the two-dimensional zero

vector (3)

Multiplying by the indicated real nurbers and adding the resulting

1’ €

‘vectors, we have:
(cl + 4c2 + 10c3) 0

(—cl " 2c2 + l4c3) 0

The definition of equality of vectors follows from the definition
of equality of matrices. That is, corresponding elements must be equal.
We must therefore have:
1 + 402 + 10c3

—cl + 202 + l4c3

(o]

Il
o

N
o

We proceed to solve this system of simultznzous linear eguations by

our usual method of constructing its augmented matrix and putting it in

its row reduced echelon form. We havg: » o
1 4 10 |o A <1 10 0) \
-1 2 14 0 0 24 0
A //l 10 6\)k
\\o 4 1o,
1 -6 0
N @ A (D



~52~

Hence, a system eguivalent to our original system can be read from

our final matrix:

= - 6c3 = 0
<, + 4c3 = 0
we can therefore let Cj3 take on any value, say cy = t, and sclve for
cy and Cy in terms of t. That is ¢y = 6t, c2 = -4t, c3 = t will give us

a sclution to cur system for any value of t. Thus, letting t = 1 we have
Cl = 6, €, = -4, and c3 = 1.

0 /3
(2) 0 ~-1 and 1

1 2 \\O
\ 14 .7 \

wre linearly independent; for suppose we had real numbers cC
s

17 cz, and

¢, such that

3 .
1 3
. < 0 |+ 02 + 03 1 = 0
> ’ 1 0
Example:
(cl + 303;\ 0
(—02 + C3) = 0
(cl + 2c2) 0

This implies that

Cl + 303 = 0
- Gy * cy = 0
c., + 2c =0
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Solving this system by our usual procedure of constructing its

augmented matrix, we have:

VA
0

i

- o+ O ©o k= o N
] H
- O O ; [ o S B ¥ pd

Hence, a system equivalent to our original one can be read from

the final matrix:

€3 =9

which can be trivially solved to obtain the uniqgue solution:
€ = ¢ =cyg =0

Thus, we have shown that if
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/1 0 3
¢y 0 + <, fl + C, 1 = 0
1 2 0
/ .
1 0 3
then c1 = ¢, =cy = 0. Hencel 0 -1 and 1 are linearly
1/ 2/
independent.

Note that if we form a matrix using the above 3 vectors as our three

column, we obtain a matrix:

0 3
A -1 1
2
1 0 1 0
for which [a] = (-0 @) + (-1 ) ll o (-1>1+3(3)’l

i

(0 - 2) +0 + 3(0 = (~-1) )
= 1 #0
This will be true in general. VThat is, .t can be shown that (Cullen,
page 55) ;

The k k-dimensional Vl’ Y are linearly independent if the

PYARERE k

k x k matrix, A, whose columns are these given k vectors, has a determinant

which is not equal to zero. (i.e. lAl# 0)
Conversely:

If the k k-dimensicnal vectors Vl, V2,......, Vk are linearly inde-

pendent, then the k x k matrix described above has a nonzero determinant.

It follows from the above that if the k vectors Vl' v2, V3,...-..,'Vk

are linearly dependent, then lA\ =0 wheré{A{is as described above.
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Likewise, if the k x k matrix A is such that fAl = 0, then the columns

of A (considered as vectors) are linearly dependent.

3.2 Basis for a Vector Space

By a basis for an n-dimensional vector space we mean a set of n

linearly independent vectors Vl’ VZ"""" Vn such that for any n—dimen—

sional vector, V, there exists real numbers Cir Cprecences C such that

That is, any vector in the vector space can be expressed as a linear
combination of the basis vectors.

Consider the following n vectors in our n-dimensional vector space:

<

1 0 0 0 0
1 0 0 0
e, = Q e, = 9 i ey = B B S en“l =t 17 ey =)
: : 0 1 0
0 0 0

o

These n vectors are obviously linearly independent, since if there

are Cy Cprevevneee, Cp such that

[ ]

e, + €, Feonenves +c e =.0=f .
€1%1 € n d

O s

then we would have

3.
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«’.‘,
+ + 0 Fovnnnan +
Oc2 003 0
+ + S PR
102_ 003 + 0
+ 002 + lc3 S + = 0
+ + Fon e +
Oc2 Oc3 0
or
cl = 0
c2 =0
03 = 0
c =0
n,
which implies that Cp = Cy = enrenn. =c = 0.
Hence,; the vectors el, ez, e3,,...;., e, are linearly independent.
Note that by a previous theorem (3.1A), we could have shown that
S YEREERERE r €, are linearly independent by considering the determinanig
|
of A, where the col'mns of A are the n vectors el, e2, ........ ' en . The
linear independence of €1 Cprevrinnnn ' ey would have followed from the
fact that ‘!l # 0.
v
Va2
Ncw let V =|. I be an arbitrary n-dimensional vector. It is obvious
v
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Example:
2
17
The five dimensional vector -3 can be written as:
1\ 0 /o 0 0
0 1 0 0 0
Z{1 04§ + 17410 - 311 + 410 + 810
0 0 0 0 0
0 8] A0 1 1

A very useful result (Cullen, page 52) is that any n linearly inde-

pendent n~-dimensional vectors Vl' V2,........ Vn can serve as a basis for

an n-dimensional veetor space.

Example:
1 1 0
Consider the three wvectors (-1 |, 2 1, and 1
' 0 \3 -2
by 3.1A, si ~i i i = 1(-1 ittt N BT -
y 3.17, since = 3 -2 Lo -2

i

(~4 ~ 3) - (2 - 0)
= -9 #0

these three vectors are linearly independent,

1\ 1
Hence, by 3.2a, |-1 1,1 2 |, and
\ O/ 3 -2

¢

form a basis for a three dimensional vector space.

.20
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I: 3
/2 \
Consider the vector 3 |. From the definition of basis for a vector
=1 2
space, .we should be able to express the vector 3 as a linear combination
-1

1 1 o
of the basig wvectors|-1 |, 2 }J, and{ 1 }.

0 3/ -2
That is, there exist real numbers Cyr Cyr Cy such that

2 "1 0

3 = cl -1 + a, + c, 1

-1 0 -2

2 (e + cp)

or 3 = (m¢y *+ 2c2 + 03)

- (3c2 - 2c3)

By the definition of equality of vectors, we have the following system

of simultaneous linear equations:

c% + 02 = 2
-cl + + =
c]r 2c2 c3 3
- D P
302 2c 1

We proceed to solve this system by our usual method of constructing

the augmented matrix and then putting it in its row reduced echelon form:

1 1 0 2 1 1 o 2
-1 2 1 3 VA 0o 3 1 5
0 3 -2 -1 0 3 -2 -1
1 1 0 2\\\
N2l 0o 1 1/3} 5/3]
0 -2 -1



We read the system which is

last matrix above to obtain:

€1

for which we trivially solve

~-59-

—1/3”

1 J 1/3

0 1/3 5/3
6 -3 -6

1 0 -1/3 1/3

0 1/3 5/3

0 0 1 2

1 0 ¢ 1

0 1 0

0 0

equivalent to our original one from the

c, = 1; c, I; cy = 2
\
2
Hence 3 may be written as -he following linear combination of
- 1 1 0
the basis vectors {-1 }|; 2 | 1 i:
0 3 -2
1 0
= 1 {~-1 + 1 + 2 1 .
0 -2

Suppose now that we wanted to expiess each of the following four

TNy
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vectors:

=
il
I
il
<
i
N
it

e
AN

1
Vl = -1 ’ V2 = 2 : and V3 =
0 3 ~2

There are, of course, four individual problems herc. We

o
3
=
o
ot

find real numbers a a_ , and a such that

1’ "2 3
2 1\ 4(1
3 = al '—l + a, z + a3 1
1 o/ : ,\3 \-2

and real numbers b b and b shch that

4 1 1 0
2 1 + b2 2 + b3 1
0 0 3 -2

]
og
i
t_l

and real numbers c

1’ 3

0 1 1 0

= cy —lj) +oc, 2 + Cq 1

0 0 3 -2

and real numbers dl’ dz, and d3 such that

-3 1 1 0

5 = dl —l:) + d2 2 + d3 1

1 0 3 -2

This gives rise to the folloWing four systems of simultaneous linear

equations:



(1)

(2)

(3)

(4)

which in turn gives rise to the

(1)

(2)

(3)

(4)

(=]
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+ o a,

+ 2a2 + a
3a2 - 2a

+ b,

+ 2b2 + b
3b2 - 2b

+ <,

+ 2c2 + c
3c2 - 2c

+ 4,

+»2d2 + d
3d2 - 24

1 0
2 1
3 -2
1 0
2 1
3 -2
1 0
2 1
3 -2
1 0
2 1




ry

Finding the row reduced echelon forms of the above augmented
1 4] 0 1
1
2
8/3
4/3
2
-2/9
2/9
1/3
0] 0 {-32/9
1 (1] 5/9
0 11 1/3

We would then construct the fonr systems corresponding to these

matrices, we have:

//l 1 0
(1) -1 2 1

o
o)
[}

(=)
W
I
[\
()
(=)
-

(2)

(=)
(=]
o}

|
=t
o
b=
o
(=]

(3)

o
Ko
<O

o
w
1
N
(o)
o]
fd

‘/\/;\H/"’\

(4)

2
3 N
-1
4
2 v
0
0
1 '
0
-3
5 VA
1

0N
o =
W W} =
I
N ool o

matrices. These systems would be equivalent to the original four systems.
We have seen, however, that solving the systems represented by

our four augmented matrices in row reduced echelon form amounts

to merely reading the elements in the last column of these matrices.

Hence, a, =1, a, =1, a., =2, b 8/3, b2 =4/3, b, =2, ¢, ==2/9,

1 3

=1/3, d

2 3 1

3 1 =-32/9, d2 =5/9, d3 =1/3.

Leaving out the step of constructing and trivially solving the

1

c, =2/9, c

2
systems represented by the augmented matrices in row reduced echelon
form, we can shorten our work by symbolically combining the above four

problems.
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bt

It will often occur in our work in Part II that we wish to express

each of a given set of vectors in terms of some set of a few basis vectors.

Let us return to our original problem. Express each of the vectors

2 /4 0 -3
W = 3\" X 21, Y —/1 , 7z 4 5
1) 0 _\o, 1

1
in terms of the basis vectors: - L 0
-1 2 1
0 ! 3 ! -2

Examining what we have done before, we arrived at'four systems
of simultaneous linear equations from which we constructed four 3 x 4
augmented matrices which we proceeded to put in row reduced echelon
form. A

Let us now simplify our work by constructing one 3 x 7 matrix

as follows:

where we have designated the vectors represented by each of the columns.

We now put this matrix in row reduced echelon form.

o
W
[
W
N
Pt
N

Lo ]
w
|
N
i
{ad
o
(=
et

~
Vi V, Vo W X Y 2
N 1 1 o l2 4 o -3
0 1 1/315/3 2 1/3 2/3
0 3 -2 1-1 0o 0 1

. 2
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1: 3.2
vy v, v, W X Y VA
1 0 -1/31 1/3 2 -1/3 -11/3
0 1 1/315/3 2 1/3 2/3
6] 0 -3 -6 ) -1 -1
vy v, v, W X Y VA
1 0 -1/3 1 1/3 2 -1/3 ~-11i/3
N
0 1 1/3 {5/3 2 1/3 2/3
0 0 1 2 2 1/3 1/3
v, v, v, W X Y z
1 0 0 1 8/3 ~2/9 -32/9
W
0 1 0. 1 4/3 2/9 5/9
0 0 1 2 2 1/3 1/3

Compare’ this last matrix with the row reduced echelcn forms of

our four 2 x 4 augmented matrices. We may therefore determine the
coeffieients ayr Ay, a3, bli b2, 03, Cqv C2' c3, dl, d2, and d3 from
our final 3 x 7 matrix.
We have:

W=1vV, +.1 V2 + 2 V3

X = 8/3 VvV, + 4/3 V2 + 2 V3

Y = -2/9 Vl + 2/9 V2 + 1/3 V3

= - ¢ ©
Z 32/9 Vl + 5/9 V2 + 1/3 v3

It is important that one understand the above procedure since

it is crucial for what is to follow ‘u Part II.

Note that if Vl’ VZ’ V3, . ., Vpconstitute a basis for an
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I: 3.2
n-dimensional vector space, any one of the vectors, Vi’ in this set
can be trivially represented as a linear combination of the basis vectors

as folldws:

y=0v, +0V,+. .. +.:i—l tV, OV, b o+ 0V
Example: 1 /2 3 [7)
Let Vl = -8 \; V2 4 41 ; V3 = 11; V4 =0
1 9 2 6
~10 o/ 3 3
\l R Ay

In section 1.3, we saw that

1 2 3 7
~8 4 1 0
1 9 2 6| #o
-10 0 3 3
and hence, by 3.1E, the four 4“dim¢nsional vectors Vl, V2, V3, V4 are
linearly independent. By 3.2B, Vi, V2, V3, V4 form a basis for a

four dimensional vector space.

We may therefore express any four dimensional vector, V, as a

linear combination of these fonr vectors. In particular, we may
trivially express each of the vectors Vl, V2, V3, V4, in the basis
as a linear combination of the basis vectors.
Example:
V3’= 6] Vl + O V2_+ 1 V3 + 0O V4
\

i.e 3 1 2 3 7

1 -8 4 1 0

= 0 + 0 + 1 + 0
2 1 9 2 6
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CHAPTER 4: CONVEX SETS
4.1 Basic Notions
Let Xl' X2, e e s Xy be k n-dimensional vectors. By a

convex combination of tnese vectors, we shall mean a linear combination:

ap Xl + a2 X2 LR a Xk
where each a; is & nonnegative real number (i.e. a;z 0), and such
that:
13%; a; = a; + a, + + a, = 1
Example: /3 1 ,/'0
8 4 / 7
1/10 -2 + 2/5 5 + 1/2 ‘ 3
1 0 ~2
V} a convex combination of | 3 ; [1\,and [0 since 1/10>0, 2/5>0,
| 8 4 / B B
|-2 -5 3

—
H
O
o

1/2>0 such that 1/10 + 2/5 + 1/2 = 1.
A set of n-dimensional vectors will be called convex if, and only

if, for all pairs of vectors, X, and X

1 5t in this set, any convex com-

by M . + » - . .
bination, al Xl a2 X2, is also in the set
It can be shown (Gass, pg 28) that if Xl’ X2, . Xk are
any vectors in a convex set, then every convex combination, ay Xl +

+ . . . ¥ s o s 1 i i 4 t.
a2 X2 + ak Xk’ of these vectors is also in this convex se
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An extreme vector of a convex set of vectbrs is a vector which
cannot be expressed as a convex combination of any other two distinct
vectors in this set.

The above definitions appear to be unrelated to our objective
and indeed to the material which Fpreceded. The concepts of convex
sets and extreme vectors will appear again, however,,as a basic notion
in Part II.

An interesting geometric interpretation can be given to convex
combinations, convex sets, extreme vectors. etc. It is necessary,
howeve;, to think of a vector as a point in space. The reader may

be able to adopt this frame of reference to treat the two dimensional

vector g as the point in the Cartesian plan whose coordinates are
(5,3) or to treat the three dimensional vector é as the point
5

whose coordinates in th;ee dimensional space axreée (2,-4, 5).
The uninitiated will have trouble, however, when trying to "see"
a seven dimensional vector as a point in a seven dimensional space.
Nevertheless, a bit of insight may be gained from the discussion

of convex sets of 2-dimensional vectors. The interested reader is re-

ferred to Gass, pp 28 and 29.
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PART II: FUNDAMENTALS OF LINEAR PROGRAMMING

CHAPTER 1: STATEMENT OF THE PROBLEM

Consider a system of m linear equations in n unknowns where the number
of unknowns or variables is greater than the number of equations (i.e., n>m).

Thus, our system 1is:

P + " : . . . . (S =
ajyp ¥yt Ay A F Tag, % T by
azl Xl + a22 X2 + . . . .+ aZn Xn = 02
5.

aml Xl + am2 X2 + . . . . F amn Xn = bm

where the matfix of ccefficients has more column; than rows.

We have seen, in examples (2) and (3) of Section 2.3, Part I, that
such a system may have éq infinite number of solutions. This will indeed
be the case if the system has any solutions at all. That is:

A system of'm equations in n unknowns where n>m has e¢ither no
solution or an infinite number of them. See Cullen, pp 1 and 55.

Recall from I-2.4A, that a system of simultaneous linear equaticns
has a unique solution if, and only if, the number of variablés is equal to

the number of equations and ’A} # 0 where A is the square matrix of
y _ _
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coefficients.

Let us now return to our system of m egquations in n unknowns where
n>m. Suppose that there is a solution to the system. Then, as we have

stated, there will be an infinite number of solutions.

AY .
Let us now consider those solutions X = "1\ té our system for which

)

X
n

. By this, of course, we mean that xlzzO, ngio, P - I

>

Vv

[

l
S e e OO

We may now be considering fewer soclutions than we were originally,
but the number of such solutions may still be infinite.

Caonsider the expression:

where the c, are fixed. We shall call this expression our objective
function.
We will obtain a value for this objective function everytime we sub-

stitute values for . .. X .
titute values fo Xy X5y roXn

A linear programming problem (or LP problem) has the following form:

: . X . . s .
Find the solution vector X =/ "1\ which maximizes (or minimizes) our

%2

objective function:

subject to the following two conditions:

(1) x ={*1\ is a solution vector of the system:

%2

X
n



(2) XlE:O' x2;:o, .

The vector X which satisfies conditions

P an:O.

-0 -

+ . : ' -
aln Xn bl

tay, ¥, T by
fon *n T bm

(1) and (2) and for which the

objective function is maximized (minimized) is called the (an) optimal

solution to the LP problem.

Examples:

(1)

Maximize 3xl + 2x2

(1)

1
xl'+ 5x
3xl v ox
(2) x>0 ;

- Tx,

+ X

subject to the restraints:

3 4
+oxq 3x4 = 10
+ Xy = 3
+ 2x3 - Xy = 1
=1, 2, 3, 4

Qur objective function here is |

+ 2x

3x 2

1

7=

+ X

3 4

which we wish to maximize in this case.

(2) Minimize l.3xl +2.7x, - .4x3
(1) Xy %, t X, <20
2xl - X, * 4x5 550
Xy T Xy T Xgg 10
Our objective here is
l.3xl + 2.7x2 - .4x

subject to the restraints:
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which is to minimized in this case.

However, at first glance, condition (1) does not resemble a system of
simultaneous linear equations. Let us consider this further. By the
inequa.ity a < 4, we mean that there exists some nonnegative real number.
(say b) such that a is "b less than 4." Tha* is, 4 ~ b = a or a + b = 4.

Thus, from the inequaiity a3 + X, + x., £ 20, we obtain the implied

equation:

xl + x2 + x3 + x4 = 20

where Xy is the nonnegative real number such that X, = 20 - (xl +tx, * x3).

Obtaining similar equations for the second two inegualities, we have

the following LP problem:

Minimize 1.3x + 2.7x, - ;4x3 + Ox4 + 0xg + Ox6 subject to the restraints
(1) Xp + %, v xg X, = 20
2?1 - Xy + 4x3 + Xe = 50
Xy T Xy T Xg + Xe = 10
(2) xp 0 g i- 1,2, 3,4,5,6

We callvx4, xs, and x6 slack variables.

It may occur that a slack’variable assumes a nonzero value in the
optimal solution. The significance of such an outcome will be discussed
later.

We have seen that no problem arises if we have a system of inequalities
since this system can be changed to a system of equations by introducing
slack variables.

In the above example, however, we dealt with changing an inequality of

the form: a <4 to a equation.a + b = 4 where b > 0. If we are faced



.

with an inequality of the form a >4, we merely write -a < -4 and
obtain the equation -a + b = -4, In this case again, bz 0.
Consider again the general LP problem:
Maximize {minimize) the objective function
cy %y tc

5 x2 + c3 x3 + . . .+t Cc_ X

subject to the restraints:

(1} +

a11 ¥y t a1 %y

In “n 1
ayp Xy tag, Xyt . ... tay x, =Db,
%m1 *1 * amz *2 * -t 2 ran n T bm
(2} xi;:C ; i=1, 2, 3, . . + +n

Vector X = E3) which satisfies conditions (1) and (2) is called a

feasible sclution to the LP problem.

With reference to the notation introduced in Section 2.4, Part I,
we may state the abeve general LP problem as follows.

Maximize {(minimize) the objective function




T3

subject. to the restraints:

e
(1) Ayp + - ¢ e @y, bl
aZl a22 * e o » a2n b2
ml am2 « o+ e s amn bm

(2)

0; i=1, 2, ..

jo]

In a more abbreviated form we can write:
Maximize (minimize) the objective functicn

CX

subject to the restraints:
(1) AX = B
(2) x =z o0

where C is the 1 x n matrix (clk Cyr - . cn); X is the n x 1

-

matrix /x \, A is the matrix of coefficients; B is the column of

~

N
1
2

&/

constants; and 0 is the n x 1 matrix

Weaw

D ree OO
.
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(o)

CHAPTER 2: MATHEMATICAL MODELS FOR LP PROBLEMS

Let us now turn our attention to examples of physical phenomena
which give rise to LP problems. Of th: following five examples, the
first four were taken from Hellief, Lieberman, pp 129-135; the last from

UP-4138, Appendix A.

2.1 The Iroduct Manufacturing Préblem

A manufacturing firm has discontinued production of a certain un-
profitable product line. This creaﬁed considerable excess production
capacity. Management is considering devoting this excess capacity
to one or more of three products; call thew produéts l, 2, and 3. The
available Capacipy on the machines which might limit output is summarired

in the following table.

Available time

Machine Type {(in machine hours per week)
Milling Machine 200
Lathe 100

Grinder 50
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The number of machine hours required for each unit of the respective

products is given below.

Productivity
{in machine hours per unit)
Machine Type Product 1 Product 2 Product 3
Millirg Machine 8 2 3
Lathe 4 3
Grinder 2 1

The sales department indicates that the sales potential for
products 1 and 2 exceeds the maximum production rate and that the sales
potential for product 3 is 20 units per week.

The unit profit would be $20, $6, and $8, respectively, on products
1, 2, and 3.

The problem is to formulate a linear programming model for deter-
mining how much of each product the firm should produce in order to

maximize profit. Let us now proceed to construct this model.

Let Xy (i 1, 2, 3) be the number of units of product i produced
per week. Since profit has been chosen as the measure of effectiveness,
the object is to maximize

20xl + 6x2 + 8%

3!
subject to the restrictions developed below.

The "limited resources" in this situation are. the available

capacity of the three machine groups and the sales potential for product 3.
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Therefore, a mathematical constraint must be developed to describe

‘each of these resource restrictions. The first restriction is that no
more than 200 milling machine hours per week can be allocated to the
activities, the production of the three products. The number of

2 3x3. There-
fore, the mathematical statement of the first restriction is

milling machine hours actually allocated is 8xl + 2x

8xl + 2x2 + 3x3f£'200.

Similarly, the other two capacity restrictions are

4x, + 3x, <100

2xl + :~:3 S 50

2.1

The mathematical statement of the sales potential restriction obviously is

X5 5;20
Finally, there are the nonnegativity restrictions.
Therefore, in summary, the linear programming model for this
problem is the following:

Maximize 20xl + 6x2 + 8x3

subject to the restraints:

(1) 8x; + 2x, + 3x,< 200
4x, + 3x, < 100

2xl + % fE 50

Xq 5520

(2) x>0, x>0, x>0.



-77-

I1: 2.2

We shall see in Part IIi that to obtain a solution to this
problem through the use of an electrcnic computer, we may leave the
model in the above form. However, if we wish to calculate the solution
by the simple method to be discussed in Chapter 4 of Part II, we must
introduce the slack variables discussed in Chapter 1, Part II.

We obtain:

Maximize 20xl + 6x2.¥ 8x3 + Ox4 + 0x5 + 0x6 + Oxy
subject to the restraints:
(1) 8x) + 2x, + 3%, + %, = 200
4x, + 3%, * X = 100
2xl . o X3 X = 50
x3 +x7 = 20

(2) X, >0, xzzo, x320, %y >0, xSE-_Q, XG?_O', xio.
Note that if x, takes on a positive value (rather than 0) in the
optimal solution, the implication in that X, hours per week out of the
200 hours available on the milling machine should not be used.
2.2 The Diet Problem
One of the classic problems of linear programming is the diet
problem. The objective iz to ascertain the quantities of certain
foods that should be eaten to meet certain nutritional requirements at
a minimum cost. Aséume that consideration is limited to milk, beef,
and egdgs, ana to vitamins A, C, and D; Suppose that the number of
milligrams of each of these vitamins contained within a unit of each

food is as given below.
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Gallon of Pound Dozen Minimum Daily
Vitamin Milk of beef of eggs Requirements
A 1 1 10 1 mg.
C 1u0 10 10 50 mg.
D 10 100 10 10 mg.
Cost $1.00 $1.10 $0.50

Let

We proceed to construct the mathematical model for this LP problem.

~
I

1 the number of gallons of milk in the daily diet

the number of pounds of beef in the daily diet

%
N
it

3 = the number of dozens of eggs in the daily diet.
The objective is to minimize cost, and the resource restrictions

are in the form of lower bounds rather than upper bounds. Therefore,

the LP model for this problem is the following:

1.0x

Minimize 1 + l.;x2 + 0.5x

3

subject to the restrictions:

(1) x) + X, + 10x, > 1
lOOxl + 10x2 + 10x3 EiSO
10%; + 100x, + 10x, >10

(2) x, >0; i=1, 2, 3

Introducing slack variables to put this model in %he form
previously discussed, we have:

Mihimize l.Oxl + l.lx2 + 0.5x., + 0x, + 0x

+
3 4 0x

5 6

subject 0o the restrictions:
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(}) =Xy = Xy = Xyt X, = -1
—lOOXl - le2 — 10x3 + Xg = =50
--lOXl —lOOx2 - le3 + X = ~10

(2)  x; >0, %, >0, Xy >0, X, >0, x>0, x>0

We repeat, however, that it is not necessary to put the mpdel in
thhis final form when utilizing an electronic computer. This will be

discussed in Part III.

2.3 The Gasoline Mix-Pfoblem

Consider a product mix problem within ths context of a simplified
oil refinery situation. ~ Suppose that the refinery wishes to blend
four petroleum constituents into three grades of gasoline, a4, B, and
C. The problem is to determine the mix of the four constituents

given below.

Maximum quantity Cost per
Constituent available in barrel
barrels per day

1 3,000 $3
2 z,boo $6
3 4,000 $4
4 1,000 $5

To maintain the required quality for each grade of gasoline, it
is necessary to specify certain maximum or minimum percentages of the
conatituents in each blend. These are given below, along with the

selling price for each grade.
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Grade Specification Selling price
per barrel

A Not more than 30% of 1

Not less than 40% of 2

$5.50

Not more than 50% of 3

Not more than 50% of 1
B Not less than 10% of 2 $4.50
C Not more than 70% of 1 $3;SO

Assume that the "profit" to be maximized is total sales income
minus the total cost of the constituents.

We proceed to construct a mathematical model for this problem.
?et Yij (i=4a,B,C; j=1, 2, 3, 4) be the totél number of barrels
Nof congtituent j allocated to gasoline grade ; per day. That is:

YAl = the number of barrels of constituent 1 allocated to gas. gr. A

per day

YAZ = i [ " ” " o 11 " 1" 2 " " 11 " " A i
"

$

1

YB 3 = " 1 n ” ” i n 1" 1 3 " ” 1" L1 © B "

YC 4 — " " 11 1" " " w "V " 4 n ” :N " ” C "
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The total amount of gasoline grade i produced per day is then
Yin F ¥ip T Y3t Yig
The proportion of constituent j in gasoline grade i is
Yi4
Yip T ¥ip * ¥zt Yy

The total profit is given by

5.5 (YAl + ¥ + Y + YA4) + 4.5 (YBl + Y + Y., + Y *)

A2 A3 B2 B3 B4
+3.5 (Ycl + Ycz + Yc3 + YC4) - 3 (YAl + YBl + Ycl)
-6 (YAZ + YBZ + YCZ) -4 (YA3 + YB3 + YC3) -5 (YA4 + YB4 + YC4).
which, when ‘like terms are combined, becomes
2.5 YAl -0.5 YAZ + 1.5 YA3 + 0.5 YAr + 1.5 YBl - 1.5 ~YBZ + 0.5 YB3
~0.5 YB4 + O'S,Ycl - 2.5 YCZ -~ 0.5 YC3 - 1.5 YC4

We must therefore maximize this profit function (our objective

function) subject to the restrictions imposed by the availability of

constituents, the blend requirements, and by the requirement that

. . !
Yijzz 0 for i =A, B, C; j =1, 2, 3, 4.
The availability restrictions clearly are:

Yar * ¥e1 T Yc1 < 3000

YAZ + YB2 + YC2 552000

The blend restrictions for gasoline grade A are:
Yar <03 (gy * Yap * Ya3 * Yag

Yoo >0.4 (YM Xy, b Yagt YM)

Yp‘3 :_<_0.5 (YAl + YAZ + YA3 + YA4)
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However, these restrictions are not in a convenient form for a linear

programming model, so they should be rewritten as:

0.7 YAl - 0.3 YAZI_
-0.4 YAl + 0.6 YAZ -
-0.5 YAl - 0.5 YAZ +

Similarly, the final forms of

grades B and C are:

0.5 YBl - 0.5 YBZ -
~0.1 YBl + 0.9 YBz -
0.3 YCl - 0.7 YCl -

Let us now make the following

model resembles the previous two
H

Let:

0.3 ¥, - 0.3 v, <0
0.4 Yy, = 0.4 Y,, >0
0.5 ¥,, = 0.5Y,,<0

the blend restrictions for gasoline

0.5 YB3 - 0.5 YB4 <0

‘0.1 Y - 0.1 YB4 EzO

B3
9.7 YC3 - 0.7 YC4 <0.

substitutions in order that our

examples.

2.3 .
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2.4 The Farming Problem

A certain farming organization operates three farms of comparable
productivity. The output of each farm is limited both by the usable
acreage and by the amount of water available for irrigation. The data

for the'upcoming season are. the following.

, Water Available

Farm Usable Acreage {in pure feet)
1 400 1500
2 - 600 2000
3 300 . ' 900

The organization is considexiné three crops for planting which
differ primarily in their expedid profit per acre and in their consump-
tion of water. Furthermore, the total acreage_that can be devoted to each of
the crops is limited by the amount of appropriate harvesting equipment

available.

Maximum Water consumption Expectéd profit
Crop Acreage in acre feet per acre per acre
A 700 ’ 5 $400
B 800 4 $300
c 300 | 3 ©$100

In order to maintain a uniform workload among the farms, it isg
the policy of the organization. that the percentage of the usable
acreage planted must be the same at each farm. However, any combination

of the crops mav be grown at any of tie farms. The organization wishes to
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know how much of eacl: crop should be planted at the respective farms

in order to maximize éxpected profit.

| Let us now proceed to construct a mathematical model of this LP
problem. Let yij = the number of acres at the i-th farm devoted to the

j-th crop.
(i=1, 2, 3; j=A, B, C)

That is:
Yipa = the number of acres at farm 1 devoted to crop A

Yop = the number of acres at farm 2 devoted to crop A

i

the number of acres at farm 3 devoted to crop B

Yoo = the number of acres at farm 4 devoted to crop C
The objective function {i.e. the profit function) is therefore
given by:
4000y g *+ vpp * ¥3a) * 300y p + yop + ygp) + 1000y 0 + vy * yy0)

The restrictions on usable acreage at each farm are

Yia * ¥Yip * ¥y <400
Yoa * Yap t ¥y <600
Yap * Y3p * Y3 300

The restrictions on water availability are
5Y1p * dvyp * 3y o <1500
5Y,5 * 4¥pp * 3y, <2000

Y35 ¥ AY3g * 3 < 200
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The crop restrictions on acreage are

Yin * ¥op T Y3 <700

+ <7 8040

Yig * ¥y ¥ V3p =
Yic ¥ Yo T ¥ <300

Because of the policy of a uniform worKload, the equations,

Y1a T Y18 T Y1 =y, +vyp * vy
400 600

Yoa ¥ Yo t Yoo = ¥Y3p * Y3t ¥y
600 300

Yipa ¥ Yip * Yic T Y3z T Y3p t Yy
400 300

must be satisfied. Since the first twe equations imply the third, the
third equation may be omitted from the model., Furthermore, these
eguations are riot yet in a convenient form for a linear programming
model since all of the vagiableS'are not on the left-hand side. Hence,
the final forms of the uniform workload restrictions are
3y p * Y1 F Yyc) 2{ypy Yo F¥ye) =0
Yo ¥ Yon * ¥y "2(¥3p * ¥3p * ¥3) =0

Following the procedure of the previous problem, we let

X1 T Y3
¥ T Yop
X3 % Y3p

=
[~

]

M
o
[ve]
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*5 = Yop
¥6 = Y3B
X7 T Yic
g T Y
X9 = ¥Y3¢

Our model for this problem then becomes:

Maximize 400(xl + x,

subject to the restrictions:

+ x3)u+ 300(x4 + Xg

(1)

1 tx, +x

+ x6) + lOO(x7 + x

7
X, +Xg +xg
Xq X tx,
le +4x4 ‘+3x7
5%, +4x5 +3x8
Sx3 +4x6 +3x9
xp HEy Ry
Xg g ¥xg
X7 tXg ¥R
3xl--2x2 *3x4 f2x5- +3x7 f2x8
x2—2_x3 X —2x6 tXg f2x9
(2) xiE: 0; i I, 2, ..+ 9

Introducing slack variables, our model becomes:

Maximize ‘400(xl +x, +x3) + 300(x4 +x

+OxlO

+OX11

+0x

12

+0x

5

13 T0%;4

+0x

+x6) + lOO(x7 +x

15

+X

+0x

8

IAA A A A IA A A TA

it

9

+ x )

400
600
300

1500

2000
900
700
800

300

)

17 T0%yg

9
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2.5 The Nut Mix Problem

A manufacturer wishes to determine an optimal program for
mixing three grades of nuts consisting of cashews, hazels, and

peanuts according to the specifications and prices listed below.
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Hazels may be introduced into the mixture in any quantity, provided

the specifications below are met.

Mixture Specifications Selling price $/1b.
A Not less than 50% cashews
Not more than 25% peanuts .50
B Not less than 25% cashews
Not more than 50% peanuts .35
D No specifications .25
Now, suppose that the manufacturer has certain capacity limits

on the amounts of

inputs he can

employ.

the price of the inputs appear as: follows:

Let these limitations and

Inputs Capacity (1lb./day) Price ($/1b.)
Cashews 100 .65
Peanuts 162 .25
Hazels 60 .35
Total 260

The manufacturer wishes to determine the guantity of each type

of nut in each of the three mixtures in order to maximize profit.
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We proceed to construct a mathematical model of this LP
‘problem. We deviate slightly from the notation of the 1108 Linear
Programming User's Manual in order to conform with our previous -
examples.

Let C, P, and H represent Cashews, Peanuts, and Hazels
respectively. Next let Yij = the number of nuts of type j in

mixture i. (i = A, B, D; j=C, P, H. 1i.e. = the number of

Yac
Cashews in mixture A, etc.

The total number of nuts in mixture A is then given by

_ +
Yoo Y Y t Yay
Likewise, the total number of nuts in mixture B is

Ype * Ypp * Ypy

and the total number of nuts in mixture D is

Ypo * Ypp * Ypy
On the other hand, the total number of cashews in all three

migtures is given by

Yac ¥ Ype * Ypc

Likewise, the total number of peanuts in the three mixtures is

Yap * Ygp t Ypp
and the total number of hazels in the three mixtures is

Yau ¥ Yau t Ypu

Hence, our mixtﬁre requirements are given by
Yac = 1/2Wpc * Yap * Yay!
Yap = 1/4lype * Yap ¥ Ypp
Ype > 1/4(ype + Ypp + Ypy)

Ypp S 1/2(ype * Ygp *+ Ypy!
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or, rewriting these inequalities to have all variables on the same

'side of the order relation, we have
~-1/2 Ype t 1/2'yAP + 1/2 YAH;<—-O
-1/4 Yac + 3/4 Yap ~ 1/4 Yan S;O
-3/4 Ype + 1/4 Yap + 1/4 Yayu E;O
~-1/2 Ype *t 1/2 Ygp ~ 1/2 Yau <0
Our capacity constraints are given by
Yac * ¥po t Ype <100
Yap * Ygp * Ypp <100
Yau ¥ Ypu T Ypu £ 60
Our cbijective function (profit function) is given by
50(ype * Yap * Yay) * 35(¥pe * ¥y * ¥gy) *-250ype * Ypp ¥ Ypy!
—e65(ype * Ype *¥pe) T -25(yap ¥ vpp *oypp) ¢ 2350y * Yy * Ypy)
Following the convéntion of the previous two examples, we

adopt the foliOwing substitutions:

X1 T Yac
X2 T Yap
*3 % Yan
¥4 T Ype
X5 = Ypp
¥6 = Ypu
X7 % ¥Ypc
*g = YDP
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The mathematical model for this LP problem is then:

Maximize

2 +x3) + .35(x4 +x5 +x6) + .25(x7 +x8 +x9) - .65(x1 +x4 +x7)

5 +x8) - .35(x3 +Xe +39)

(after combining terms) =-.15x, + .25x2 + .le3 - .30x4 +'.10x5 +

1

+Ox6 - .40x7 + 0x8 - .10x9

subject to the restraints:

{1)
-0.5 x; + 0.5 x, + 0.5 X3 < ©
-0.25x%; *+ 0.75%, - O.25x3 < 0
-0.75x, + 0.25%; + 0.25x, < o
-0.5 x, + 0.5 Xy = 0.5 Xe < 0
% +x4 +x7 < 16¢
X, +x +Xg SEIOO
X5 +x6 +x9§£ 60

(2) x5 20; i-1,2, «..,9
Introducing slack variables, our model becomes
Maximize -.15%; f -25x%, + .15x3 - .30x4 + .10x5 + 0x, —.40x7 +
Oxi - .le9 - Oxlo + 0xll + Oxl2 + 0x13 + Oxl4 +

0x + Ox

15 16

2.5
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CHAPTER 3: ANALYSIS OF FEASIBLE SOLUTIONS

3.1 Obtaining a Set of Feasible Solutions

In this and the next éhapter, we shall assume that the
objective  function of oﬁr LP problem is to be mipimized. We shall
call attention to the péints at which our statements differ from
-the case where the objective function is to be maximized when
such variations arise. -

éénsider again the general LP problem:

Minimize c + c

le 2x2+....+cnxn

subject to the restraints:

(1) a;, ¥ + a;, %, + . . .+ éln X = bl
a21 xl + ass x2 S asn X, = b2
am X + a o X, + . . . . T e bm

(2) %x,>0,i=1,2,...,n
or symbolically:
Minimized CX suhject to:
(1) aXx =B
(2) x>0

Let us look at restraint (1), the system of m simultaneous

linear equations in n unknowns.
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Viewing this system as merely an abstract set of equations,
unrelated to any physical phenomena, we can make no assumptions.
However, if this system arises as the mathematical model of a wvalid
LP problém based on some set of physical conditions, we may assume
the following:

(1) The number of variables is greater that or equal to
the number of equations (i.e. n2m).

(2) The rank of the m X n matrix of coefficients, A, is m.

(3) Any m columns of A, when thought of as m-dimensional
vectors, are linearly independent. This amounts to
saying that if D is any square m x m submatrix of A,
thenlD’ # 0 and hence ™1 exists.

Suppose now that‘we wish to obtain a feasible solution to our

LP problem. In the systemn,

aj1 Xy taggxt. . ta X =b
a21 xl + a22 X, + . . .+ a2n xn = b2
aml xl + am2 x2 + . . .+ amn xn = bm

we choose any m variables and let the remaining n-m variables be
~equal to zero.

Our system of m equations in n unknowns, AX = B, then reduces
to a system of m equations in m unknowns, DX = B, where D is the

square m x m matrix whose m columns are the columns of A which correspond
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to the m selected variables.
By assumption (3),"D]# 0, and hence D*l exists. We may
therefore solve for X' to obtain X' = D~1B. Here, we have adopted

the symbol X' to designate the m x 1 matrix of unknowns being
solved for. Henceforth, we shall use X and X' interchangeably=~
determining whether we mean an m x 1 matrix or an n x 1 matrix by
the context.

We will obtain a solution, X, to our system AX = B fbr each
choice of D which we make.

The guestion arises: How many choices‘of D are there? Recall
that D is determined by choosing m ¢of the n variables. For each
way of choosing these m variabies, there corresponds a unique
square matrix, D, whose construction is discussed above.

There will be as many matrices, D, then, as there are ways of
choosing m of the n variables. If we were to choose two items from
a set of four, we might choose‘the first and second, the second and
third, the third and fourth, the first and third, the first and fourth,
or the second and fourth. That is, from a set of four items, we can
choose two items in six different ways.

In general, from a set of n ifems, we may choose m items in<;>
different ways. Here, the symbol(rrl:) represents the number

n! . eg.<4> = 4! = _ 4! = (4) (3) (2) (1)
m! (n-m) ! 2 2! (4-2)! 212! (2) (1) (2) (1)

Thus, given the system AX = B which must be satisfied by a

solution to our LP problem, we can obtain a solution (to the system
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AX = B) by choosing any m of the n variables, letting the remaining

n-m variables be equal to zero, and solving the resulting system

of m equations in m unknowns, DX = B to obtain X = D—lB.
n

We will then have(é)such solution vectors to our system

AX = B. Any such solution vector, X, for which X>0 (i.e. x;, >0;

i=1,2, . . . +, n) will also be a feasible solution_to our LP problem.
We will not have obtained él; of the solutions to our system
AX = B by this method of choosing m of the variables and letting
the remaining n-m be equal to -zero. For example, a solution to the
system AX = B which has fewer than n-m zero components will not be
arrived at by the above procedure.
Keeping in mind, however, that our aim here is to find the
"best" solution to the system AX = B for which X 2 0, we may not
have to consider all of the solutions to the system AX = B. This

will indeed be the case as we shall see in the next section.

3.2 Basic Theocorems
Given the LP problem:
Minimize CX subject to:
(1) AX =B
(2) x>0,

we recall that a feasible solution to this LP problem is a vector X

which satisfies (1) and (2).

A basic feasible solution is a feasible solution with no more

than m positive Xy That is, at least n-m of the X; are zeros We
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note that the feasible solutions which we obtained in 3.1 were basic
feasible solutions.

An optimal solution is a feasible solution which minimizes, .

in this case, the objéctive function, CX.
We have the following useful theorems (Gass, pp 46, 47, and 52):
[1) The set of all feasible solutions to our LP problem
is a convex set, K.
(2) The extreme vectors of this convex'set, K, are merely
the feasible solutions which we obtained in Section 3.1.
(3) 'If the objective function, CX, {(i.e. C; Xy t cy X, *
e o o F cn xn) assumes an optimal value, it does
so for an extreme vector of K. If CX assumes its
optimal value for more than one extreme vector of K,
then it takes on the same value for every convéx
co#bination of these vectors.
Let us now stpose that the LP problem:
Minimize CX subject to:
(1) AX =B
(2) x=20
has an optimal solution.
We now have a method, although not a very efficient one, of
finding this solution. From Section 3,1 and the above theorems,
we see that our procedure is as follows.

(1) Choose m of the variables from Xyr Xyr o o o o0 X

Set the remaining n-m variables equal to zero.
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This reduces the problem of finding a solution to the system
AX = B.to the problem of finding the unique solution to DX = B
where D is as constructed in Section 3.1. This gives the unique solution
X = D'lB,

(2) We will obtain/n)solution vectors, X, to our system

m
AX = B by step\one. We must then check each of these
C;\solutio-ns to see which satisfies X20. Such X will
constitute a set of feasible solutions to our LP
problem. In fact, the feasible solutions so obtained
will constitute the extreme vectors of the convex set
of all feasible solutions.

(3} Since we have assumed that our LP problem has an
‘optimal solution, we know by Theorem 3 of this section
that our LP problem will achieve this value for one
of the extieme vectorf of K.. (i.e., for one of the
vectors obtained from step (2) above.) There will not
be more than(;)such vectors. We therefore evaluate
CX for each of these vectors and designate the vector
which produces the smallest value, in this case, of
CX as the optimal solution to our LP problem.

Note that what we have arrived at is a method for arriving at
an optimal solution for our LP problem if we know that an optimal
sélution exists.. |

The procedure is tedious and time consuming since we must
analyze(%)vedtors. However, the method does contain a fiﬁite number

-0f steps and can be carried out with a considerable amount of time

"and patience.
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Since it is desirable to arrive at the optimal soclution to an
LP problem in the most efficient manner, the above procedure must
be altered somewhat.

In general, the proc¢edure is to start with a given extreme
vector, to analyze it and then to obtain another extreme vector by
changing only one of the components. We continue this--~stopping at
a "certain stage"--being assured that the final vector in this
sedquance is our optimal'solution. The technique involved in this pro-
cedure is called the "Simplex Method" and is discussed in the next

chapter.
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CHAPTER 4: THE SIMPLEX METHOD

4.1 Introduction
We shall present merely the mechanics of the simplex method
here. The interested reader with a sufficient mcthematicél back-
ground may find the theoretical justification for this technique
interesting. Reference i made to Gass, pp 59-71.
Although our appfoaqh will bek"cook—boékish" in nature, the
fact that we imply the technique of putting a matrix in its row
wér&hmed echelon form--and call this procedure just that when we do
use it--raises our discuséion one level above the usual presentation
of this technique.
Let us now look at the system
+ g X =Db

X, + + a

11 *1 12 ¥2 70 o0 1n *n 1
a21 xl + aéz x2 S I a-2n xn = b2
an xl + am2 Xy + . <. + amn X, = bm

Consider the matrix of coefficients

L S T T T Y

[
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ByAthe vector Pl’ we mean the first column of this matrix.

By the vector PZ; we mean the second column of this matrix, etc.

The vector Pi' of course, corresponds to the variable, X, -

We may therefore state assumption (3) of Section 3.1 as follows.

*%

Any collection of m vectors from the set P P « « « o P

1f "2 n

are linearly independent. * * *
With reference to Section 3.2, we choose m of the n variables
and set the remaining n-m equal to zero. Let us refer to the m

0 L . » . »
variables which we choose as the basis variables. If x; is a

basis variable, we shall call the corresponding Pi a basis veegtor.
|

The matrix, D, which we constructed in Section 3.2, then,

was merely m x m matrix whose columns were the basis vectors.

4.2 Procedure
Consider the LP problem:
Minimize Xy = 3x3 + 2x5
subject to the restraints:

(1) Xq + 3x2 - X5 + 2x5 = 7
- 2%, F 4x3 + x, = 12
-4x2 + 3x3 + 8x5 + %o = 10
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(2) =, 20 ; i=1,2, ... ,n

We see that if we choose Xyr Xy and Xe as our basis variables
{(letting Xy = Xg = Xg = 0), our system becomes
Xy = 7
X, =12
Xe = 10
X 7

0 We need not construct D and D' in this case.

B

it

However, to be formal, we may write the above as DX

or IX = B since D in

this case is the 3 x 3 identity matrix, identity matrix, égo Thus,

00

X =1 "B = B since I"l = TI.

It will occur in our procedure that we know which variables
we wish to be our basis variables. It may therefore be advantageous
to congider a system equivalent to our original but in which D,

the matrix of basis vectors is the idéntity.
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We illustrate this with our example. We have decided that

Xyr X4 and X are to be our basis variables and hence P P

1r ~47
P6 are our basis vectors.
We therefore construct the following table.
Pl P4 P6 P2 P3 PS PO
1 0 0 3 -1 2 7
0 1 0 -2 4 0 12
0 0 1 -4 3 8 10

where PO is merely the column of constants. The 3 x 7 augmented

matrix corresponds to the system:

Xy + 3x2 - Xq + 2x5 = 7
x4 - 2x2 +4x3 = 12
X6 - 4X2 +3X3 + 8x5 = 10

Our objective function is

5 06 x6 = x2—8x34.2x5

Hence,c, = 0; c¢

1 =1; ¢, = =-3; ¢, = 0; ¢. = 2; c,. = 0. We add this

0 0 0 1 -3 2 j
Py Py Pe ) P3 Fs s
1 0 0 3 -1 2 7
0 1 0 -2 4 0 12
0 0 1 -4 3 8 10|
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17 P4, and P6

dicated by listin¢ +iem first), we include a column on the left

Since P are our basis vectors (which we have in-

headed "basis" and then list the basis vectors again with the

appropriate cj to the left of basis vector Pj‘ We then have

4.2

0 0 0 1 -3 2
T Basis P P P P, Py P, P,
0 P T 0 -1
0 P, ¢ 1 0 -2 4 0 12
b P 0 0 1 -4 3 8 10
L 6 | .

We have designated by vector T, the column of cj‘s correspondi

to the baslis vectors.

We now calculate the real number (T e Pj) --cj for j 0, 1, 2,

and list this value beneath the vector Pj' Recall from Section 3.1
Part I, that the dot product of two vectors is a real number. Thus

T e Pj is a real number and since cj is also a real number,(?- P)-1j

Note that T+ P,

in this case since T‘=<g)

Inhcluding this final information, we construct "Tableau 1"

is a real number. 0 for j 6, 1, 2, 3, 4, 5, 6

TABLEAU 1
‘a 0 0 1 -3
T Basis Pl I’4 P6 P2 P3 P5 PO
0 \Pl 1 0 3 -1
0 ?, o 1 0 -2 @ of 12
0 P, 0 0 1. -4 3 8] 10
’ 0 0 0 -1 3 —2J

ng

r
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The array which is heavily outlined will be called the augmented

matrix of TABLEAU 1. The circled element will be discussed shortlv.

Recall from Section 3.2, Part LI, that to find the optimal solution,
we merely have to investigate the(g)ways of choosing the m basis
vectors from the set of n column vectors of A. If we choose this
set of m vectors out of a collection of n vectors in the "best"
way, we will have determined our optimal solution.

Thus let P , P, . . . , P, be the m vectors which are the

S r t
"best" basis véctors. This implies that Xgr X 4+ - . X, are our
"best" basis variables. That is, by 1etting.the remaining n-m
variables be equal to zero and solving the resulting system of m
equations in m unknowns
DX = B,
we will obtain our optimal solution

1,

X =D
The problem, then, is to find the "best"” m basis vectors.
With reference to our éxample, we shall choose a new basis and
construct TABLEAU 2 from TABLEAU 1, choose a different basis.
and construct TABLEAU 3 from TABLEAU 2, etc. However, we shall

not determine our new basis vectors in a haphazard manner. Indeed,

this is the essence of the simplex method. That is, for each

choice of basis vectors, we construct a tableau.
In the simplex method, then, we:
(1) Start with a given basis and construct TABLEAU 1.

(2) Examine each tableau and from the last row, determine
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vif the basis vectors which gave rise to this tableau
are the "best" choice or not. 7
(3) If not, determine which vectors to designate as the
basis vectors for the next tableau. The method here
is that the new set of basis vectors will differ
from the old set of basis vectors by only one vector.
:By examining the tableau, we decide which vector is
to leave the. 0old basis and which vector is to enter
the new basis to replace it.
We illustrate the»procedﬁre‘with our example befofe formally
listing the technique. Recall that we had previously decided that

“Rr first set of basis vectors would be P P and P_. from which

1’ T4’ 6
we constructed TABLEAU 1.

We examine the last row and see that it is not true that

(7 -Pj)- cj<;0 for all j. That is, @"PB)— c3>'0. The basis

corresponding to this tableau, is not, the "best" choice of basis

vectors.
We now look at T - Pj T ey for those j for which(T » Pj)~ cj>()
and choose the maximum . (T e Ej) —'cj. In this case, (Te PJ) - cj > 0

only for j = 3. Hence max (T- Pj)f cj =(T;~P3)— c3 = 3. We therefore

select vector P3 to enter our basis.

We now: consider the components of P in this tableau which

3
are positive. We divide these components into the corresponding

components of P0 in this tableau, That is, the components of P3

which are positive are the second, 4, and the third, 3.
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We calculate:
Second componentAof PO = 12 =3
Second component of P3 4
Third component of PO - 10
Third component of P3 3
Since min (3, 10/3) =‘3, we circle the second component of

P3; This element, 4, in ¢ur tableau is called our pivot element.

Looking to the left, we see that the vector P, is to leave our basis.

4

Looking above, we see that'the vector P3 is to enter the basis.

Our new set of basis vectors, then, will be P P and P .,

ir "3 6

This will determine TABLEAU 2.’

We begin construction of TABLEAU 2 by listing the new basis
vecters first in our horizontal list across the top as well as
listing them in a column to the left along with the appropriate cy-

We obtain:’ TABLEAU 2 (partial)

0 -3 0 1 0 2
T Basis Pl P3 ‘P6 P2 P4 P5 PO
0 P, 1 -1 0 3 o | 2

-3 Py 0 4 0 -2 1 0 12
o | pg 0 3 1 -4 0 8 10

Before constructing TABLEAU 2, we wish to express each of the

vectors Po, Pl, P2’ P3, P4, ?5, Pﬁ in terms of the basis vectors

P, Pg, PE' From Section 3.2, Part I, we know that this amounts
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to merely putting the matrix

1 -1 0 3 0 2 7
0 4 0 -2 1 0 12
0 3 1 -4 0 8 10

in its row reduced echelon form to obtain:

1 0 0 5/2 1/4 2 10
0 1 0 -1/2 1/4 0 3
0 0 1 -5/2 -3/4 8 1

We call this last matrix the augmented matrix of TABLEAU 2.

0
Calculating T 'Pj—cj for 3 = 1, 3, 6, 2, 4, 5 {(where T =<53>in

this case), we obtain:

T+ P, = (0)(1) + (=3)(0) + (0)(0) = 0
T ¢ Py = (0)(0) + (=3)(1) + (0)(0) = -3
T 4P, = (0)(0) + (=3)(0) + (0) (1) = 0
T P, = (0)(5/2) + (-3)(-1/2) + (0)(-5/2) = 3/2
TP, = (0)(1/4) + (=3) (1/4) + (0)(~3/4) =-3/4
TP = (0)(2) + (=3) (0) + (0)(8) = 0
Hence,
T+F;-¢c; = 0-0=0
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We therefore have:
TABLEAU 2

0 -3 0 1 0 2
T Basis Pl P P6 P2 P4 P5 PO
0 Pl 1 0 5/2 1/4 10
-3 P, 0 1 0 |-1/2 1/4 0 3
0 P6 0 0 1 ~-5/2 ~3/4 8 1

0 0 0 1/2 ~-3/4 -2

Examining the last row, we see that not all of the entries

are less than or equal to zero. Thus, our basis vectors are not the

"beétj' Since 1/2 is the only entry greater than zero, it is the

Hence P2 will enter the new basis.

Since 5/2 is the only positive component of P2, we needn't

largest such entry.
calculate 10/(5/2) since there is nothing to compare it with. That
is, we know immediately that 5/2 will be our pivot element.
Therefore, Pl will leade our old basis, and P2 wiil enter our
new basis.
As we did above, before constructing TABLEAU 3, we first

rearrange TABLEAU 2 to indicate which vectors will be in our new

basis. We obtain:
‘ _ TABLEAU 3_(partial)
1 -3 0 0 0 2
T Basis PZ_ P3 P6 Pl P4 ,mm.ﬁ§, 'PO
1 P2 5/2 0 1/4 2 10
-3 Py -1/2 1 0 0 1/4 0 3
0 1>6 ~5/2 0 1 0. |-3/4 8 1
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Putting the matriy

5/2 0 0 1 1/4 2 10

~1/2 1 0 0 1/4 0 3

-5/2 ¢ 1 0 -3/4 8 1

“in its row reduced echelon fcrm, we obtain

1 0 0 2/5 1/10 4/5 4

i} 1 0 1/5 3/10 2/5 5

\\\? 0 1 1 -1/2 10 11

the augmented matrix of TAELEAU 3.
- 1
Calculating T °Pj - cj for 3 =2, 3, 6, 1, 4, 5 (where T =}3|in
0

fhis case), we obtain: .
Nj TABLEAU 3

1 -3 (U 0 0 2
T BaSii.*.__Fg,-___P3 P6 1 Pl _Eé . P5 B PO
1 P2 1 0 0 2/5 1/10 4/5
-3 P3 0 1 0 1/5 3/16 2/5 5
0 P6 0 0 11 1 {-1/2 10 11
0 0 0 ~-1/5 {~-4/5 -12/5
Examining the last row, we see that all values of T+ P, - c

]
are less than or equal to zero. The basis vectors which gave rise
to this tableau, then, are the "best."

Now TABLEAU 3 corresponds to the following system which is

_equivalent to our original system because of the derivation of this

tableau:
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X, + 2/5 xy + 1/10 X, + 4/5 Xg = 4

x3 + 1/5 %y + 3/10 X, + 2/5 Xg = 5

X + Xy - 1/2 X, + 10 x5 = 11

or rewriting this:
2/5 Xy + %, + 1/10 X, + 4/5 Xg = 4
1/5 x1 + X4 + 3/10 X, + 2/5 X = 5
%y - 1/2 X, + 10 x5‘+ Xe = 11
Since P

9t P3, and P6 were the vectors which we decided were the

best basis vectors, we choose Xyr Xqr and x_. as the basis variables.

6
That is, we set Xy T XKy = Xg = 0. This reduces our system to:
X, 4
Xy 5
Xe = 11

Hence our optimal solution is

&3 0
) 4
X = Xq = 5
X4 0
Xg 0
Xe 11

We can easily calculate the optimal value of the cbjective function
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1 1
CX = (cl, Cor = v o s c6) > = (0, 1, -3, 0, 2, 0) X,
: X4
: X4
: %5
b4 X
by substitution to obtain:
(Or 1 "31 0, 21 0) 0
4
5
0
0
11

i

(0) (0) + (1) (4) + (=3)(5) + (0)(0) + (2)(0) + (0) (11)
= ~11

Let us now state the procedure which we have followed.

_ X\ o
Minimize CX = (cl, c2, e e s cn) 1 c; ¥ tc, %, Fo.
X
2
! .
b4
n
+c, x, subject to the restraints:
(1) a;q ¥ + ay, X, + . . .+ a;, x, = bl
31 ¥p T Ay ¥t - -t A, X, = by
aml %y + am2 X, kU an Xn = bm
(2) x;20; i=1,2, ..., n
We consider the vectors Pl’ Por v v o h P and attempt to find

the "best" selection of m of these vectors to be our basis vectors.

We then solve for the corresponding basis variables by letting the
}

remaining n-m variables be equal to zero.
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-We have:
//Ali\\ by
331 b,
P, =l . i Py, P e e e e 0 B P, .
any b

Now, fOr each tableau, our values of aij and bj (i =121, 2, . . .

n; 3 =1, 2, . . . , m willbchange. However, this will not cause

us any confusion. If we write a,., when speaking of the 4-th tableau,

23

we shall mean the second component of P, in this tableau. This will

3

differ from ass in the 7-th tableau. Likewise, b5

tableau will differ from b5 in our 8-th tableau since the column

of constants in the equivalent systems which these tableaus respectively

in ocur second

represent may differ.

(1) We begin with a given set of m basis vectors. We then con-
struct a matrix with Pis Posr o« o v v Py P0 as its columns -- putting
the m basis vectors first, then the remaining n~m nonbasis vectors.

We then put this ﬁatrix in its row reduced echelon form if it is
not already in this form. This is the augmented matrix for this
tableau.

Above each column of this matrix, we designate it by Pj (j =
AO, 1, . . . , n). Above each Pj (j =1,2, . . «. . . , n}), we put
the corresponding cj.

To the left of the l-st column, we form a column designating
the m basis vectors for this tableau with the corresponding cj
forming a column to the left of this. We call this final column

the vector T for this tableau.
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For j =1, 2, . . . , n, we calculate the real number T -Pj—c.

and place it in a box beneath the column headed Pj.

' (2) We examine the last row of our tableau. If T - Pj—cjfg 0
for all j, we have arrived at the "best" selection of m basis vectors;
If there exists a j for which T~ Pj—cj > 0 but for thch aijfg 0
for all i, then no optimal solution exists.
If. for every j for which T 'Pj-cj > 0, there exists some aij:> 0,

then the Pj for which T 'Pj—cj is the largest will be the vector

to enter our new basis.

(3) If Pj is the vector determined in step (2) to enter the

basis, we know that at least one aij >0.

For all such i (i.e. for all aij:>0), we calculate

b.
i
a, .
ij
Note that j is fixed. It is determined by (2). The ai..for which
the bl just calculated is least is called the pivot element of
aij our tableau.
If a.. is the pivot element, P. is to leave the basis and P.
X — AT -

g
is to enter the basis. ’

We now have a new basis to investigate and hence go back to
step (1). We continue this process until it is determined in step
(2) that we have arrived at our "best" set of m basis vectors or that

no optimal solution exists.
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If the LP problem was to maximize CX subjecﬁ to:
(1) AX =B
(2) x>0,
steps (1) and (3) in our procedure would remain the same. Step (2),
however, wanld become:
(2') We examine the last row of our tableau.
If T - Pj—qj Ef() for all j, we have arrived at the "best" set
of bésis vectors.
If there exists a j for which T_°Pj—cj'<:0 but for which aijfg 0
for ali i, then no optimal solution exists.
If for every j for which T - Pj—cj<i 0, there exists some aij > 0,
then the Pj for which T e Pj_--cj is the most negative will be the
vector to enter the basis.

Note: The general LP problem is to minimize

CX = +c, %x, +. . .+t cC_x

€1 X1 2, %2 n *n

subject to the restraints:

(1) all X + a12 X, + . . . F aln x, = bl
ay) X3 tag, X v .. oty x, =Dy
aml xl + am2 x2 + . . .+ amn xn = bm

(2)  x; > 0; i=1,2, 4+« « . ,n
We must begin the simple procedure with a given basis. It
will often occur, as in the example of this section, that m of

tbe p vectors Pl, PZ' e ey Pn are
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1 0 0 0
0 [ 1 0}
o |, [ . . . .
2 1 - . . . r . 1 .
: 0 : :
0 ! 0 0
t 1 1

0 0

We would then choose these m vectors as our initial basis vectors.
! . O 3 «
If we do not have m such vectors among our original n, we might

consider the following augmented LP problem:

Minimize cl xl + c2 x2 + . . .+ cn xn + wxn+l + wxn+2 +
.« o o + wxn +m
. subject to:
(1) a;; X + aj, %o + . . .+ a14 ¥n + Xo- = bl
a21 Xy + a22 X, + . . . F a2n Xn S Xp = 2 + . . .= b2
aml x1 + am2 x2 + « o+ amn X+ v o o o ¢« o o + xn+m - bm

(2) x.>0; i=1,2, .. .n,n+1,n+ 2,

w is an unspecified large number.

Thus, the vectors Pn P P can be chosen as

+1’ "n+2" ° " ' “n+m

the initial basis for this augmented LP problem. If X

»

feasible solution to the original problem, then X' 1\ is a feasible

solution to the augmented problem.

Drev QD Moo
o
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By the nature of w, if the simplex procedure gives us a

minimum solution X'=

Xpe1
%1
X =/, would then be the optimal solution to our original
2
. problem.
- / \
*n %1
If the original problem is not feasible, and if X'= X, is
the minimum feasible solution to the augmented system, )
then at least one x .. will be positive. The interested I '
X
n+m.

reader is referred to Gass, page 72. "
In models whkch arise from LP problems in which a slack variable
has to be introduced in each equation (i.e., when we have a system
of inequalities), there will be no need to werry about an augmented
LP problem. The basis vectors will be apparent,.
"he reader, with a great deal of time and patience, should now
be able-to find the optimal solutions to the examples;in,éﬁapfernz,
Part II. It will prove to be more efficient, however, to utilize an
electronic computer to obtain these solutions. Part III discusses the

necessary procedure.
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PART III: UTILIZATION OF THE UNIVAC 1108

CHAPTER 1: OBTAINING AN OPTIMAL SOLUTION (THE PRIMAL PROBLEM)

1.1 ‘Scope

This manual is a primer to be used in conjunction with the
Linear Programmingf—Programmefs Refererne Manual (UP-4138). The
scope of this manual is especially pertinent in Part II. No attempt
is made to discuss all of the commands mentioned in UP-4138. Instead,
a few basic commands are explained with the hope that the user will be
able to utilize manual UP-4138 after the introduction presented here.

An LP tape is available for the UNIVAC 1108 located «t Bellcomm
in L'Enfant Plaza, Washingtoﬁ, D.?. This tape, LPPWB--#1815, contains
a program for "solving"‘an LP problem. To utilize this tape, the
user must be able to "call" the tape via the Exec 8 control language,
"feed in" the data for his particular problem, and f£inally obtain
the desired information by using various "commands."

In this chapter, we seek only to obtain the optimal solution to
our LP problem and to display our data in a convenient form. Finding
the optimal solution to an LP problem is sometimes referred to as

the primal problem.

We shall investigate other information about our LP problem which
can be obtained from our LP tape as well as the commands necessary

to obtain this additional iaformation in the next chapter.
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1.2 The Run Stream

By the run stream of our LP problem, we shall mean the sequence
of commands to the Executive System neceésary to utilize the LP
tape. The following run stream is appropriate for the Exec 8 SYstem'
Version g.2.

The first card in our run stream is our "run card." The infor-
mation on this card,which may differ for various runs, is explained

below.
i

{
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The reader is refered to the Bellcomm--Exec 8--Users Manual
for an explanation of these commands.

Following the last Executive command above, the "Execute"
command (@xQr - etc.), come the commands to the 1108 and the data.
After all of these cards are arranged in the deck, place a final
Executive command. This card is simply
§!—§; Blaleielr [ ;_Bo ni2filiehs el \5!&9 20{211 22073 24{25 2] 27128 oo 30} |32 33134135 36{37!

I""‘t‘ R e
: ! J
leF i, | R IRRRERN _

It follows the card
B §2 3 [a]s]el7 [a oo thztiafalishelrieliofaoiani oz 24(25 26]27{28 1291301331132} 33}34135 36 137138 |39 §;E§\§
..‘I.. s N j
E|N|DJ|0| B ‘ R Ia
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1.3 Input of Data

Recall Example 1, Chapter 2, Part II. We wished to determine
Xy xé, and Xas the number of units of products 1, 2, and 3, respec-
tively, which should be produced each week in order to maximize

the profit function

20};1 + 6%, + 8x

2 3

subject to the restrictionsg:

(1) 8xl + 2%, + 3x., <200

2 3 =
4xl + 3x2 < 100
2xl + X3 < 50
X3 < 20

Note here that we leave condition (1) in the form of a system

of inequalities.

We first create a name for each row ard for each variable in
(1) as well as a name for the objective function. The requirement
here is that each name must contain from one to six symbols with
a space counting as a symbol.

For the three variables, Xy and X3y we create names which

X
will remind us what these variables represent. Hence, we let:

PROD 1 = xl
PROD 2 = X,
PROD 3 = x
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The obvious name for our objective function is the six symbol

name: PROFIT.

Considering the origin of the four inequalities in (1), we

designate them as follows:

8x., + 2%

1l 2
4xl + 3x2

2xl

Recall that after the introduction of slack wvariables,

+ 3x5 <200 MILMCH
< 100 LATHE

+ xy < 50 GRNDER
X3 < 20 SALPT3

our

system of inequalities became the following system of equations:

8x. + 2x

1 2
4xl + 3x2
2xl

|
We will not be concerned

when utilizing the computer.
for us. We need not create a

Xe and x7.

inequality from which they arose.

MILMCH = x4
- LATHE = xs
GRNDER = x6
SALPT3 = x5

+ 3x3 + Xy = 200
+ Xg = 100

+ Xg + X = 50
X4 + Xq = 20

with writing this system of equations

The computer will "take care of this"

name for the slack variables Xy0 XS’

The computer will designate them by the name of the

That is, the computer will set:

1.3
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* % Therefoie, MILMCH represents both the first inequality and the
slack variable introduced into this inequality to create an equation. * *
Hence, if MILMCH assumes a positive value in our optimal solution,
this means that the slack variable X is positive (rather than zero)
in our optimal solution. We noted in Section 2.1, Part II, that
this, in tgrn,would imply Xe hours ber week out of the 200 hours
available on the milling machine should not be used.
We are now prepared to input. the data for this particular
problem. The first card after the executive command "execute",
is a control command to the llOB.désignating whether the objeétive
function is to be maximized or minimized.
o If this card is absent, the syStem will assume that the ob-
jective function is to be maximized. * *
Since this is indeed the case in our problem, we do not include
-this card. |

If the objective function were to be minimized, we would have

included the following card after the "@xQT -~ etc." card:

O E

za;2x[22 EIPRIRD

: T -
\§2345!67SQROH\QHHHMHIE&I 234

{
5,514 |opla|g qr| o] | ¢aN| | | P

{ T R N T
i
i )

B
()
[
~o
~
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Suppose that our objective function is c1 ¥; + c, X + . 0. .

+ c, ¥, and our (lst) restriction is

all xl + a12 X, + . . .+ aln xn f;bl
aZl x1 + a22 X, + .. . + a2 Xnﬁfibz
aml X ta,x+t. ... t+a x f;bm

We have indicatgd that the inequalities may be in either di-
rection. We may also have equalities.

To read'this information into the computer, we must specify

the values of Cyr @y7r @n77 o = o 1 @97 Cys a12’ Bogr o v e

am2’ c3, e e e s s ¢ cn, aln’ a2n, - bl, b2, -« « 4+ b

mn m

in this order.

-

We must have one card for each of these values and must arrange
these cards in the indicated order. A card need not be included in
the data deck, howe%er, to specify a value of zero.

We illustrate ﬁhis procedure with an example. ‘Following the

card "SET OBJECT TO (MIN )", if it is included, we put the card

Vi2 1314151617 1819 101T112013114115116{17118{19]20,21122123 ?4!25 2612712829 30‘31 32133{34135 (3637138 39!»"
Liopp| |. ] [

Our next card(s) designates the names we have created for our

rows (i.e.,our objective function and the inequalities in condition (1)

We have:
|

i

P {213 14{5(6{7 18 19 {10[31{12113114115{16(17|18{1%{20(21 ?22324]25 26127128 129(30{31132133{34[35(36(3713¢
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RN SR Bt s - . L gy e e e e cay s -y

. % l}ﬁ!:»{/ g:é l') {!O“I]IPLJH[HM !I :\:~%5-.{3‘,{;]i;y]z}%p.ilzs,}(, 2740 ,:l:(! } ¥ 51 M 3,‘5! s/‘ "*(ai,q;ivl i

T - : - ‘. . : | “ ; ! ! P ‘,. . ; ‘ i .

cip s b RIRgE ITy i,_i,\,-!_)l,f'leI‘ . ! .’"iL'A BE
L O T —1'; - x T ;i
i HOGRN REEBE ? +5 A k2 ey [l

Note the card columns in which we enter the appropriate in-
formation.- The "5" in column 6 represents the number of row labels
contained on the card. We begin the row names in columns 25, 37,
49, and 61. If there were any more row labels, we would have begun
another card putting the appropriate number in column 6 and again
starting the labels in columns in 25, 37, etc.

Before each row label, we put either a "+", a "=", or a blank:

A blank indicates that our row is either an equation or
the objective function.

A "+" indicates that our row is an inequality of the form

A "-" jindicates that our 'row is an inequality of the form

We proceed to input the nonzero cj and aij as follows.

We include the card o before
EER R T R T it (s IR St el St e ¥ v
L. Yo "I %ﬁohﬁnh;mijwslﬁnJ 2k
specifying our data. S ‘;«T“Lt“i mEEER
1 1 H
ATRILX 4 Lid!

Our first data card is

~

- , S — -
'qu 3111516 6 '?FO REAFARKIREISEARET R WAR IR 4,\/,2]12?] :‘4525{26 27126 (29130131132} 33154 ‘5‘43115.’!:‘
1 = T '
| P'Riqp| 1L |P|RD F|T L 12]ol ]

LS

which represents the coefficient of % (PROD 1) in the objective

function (PROFIT).

11 L
.

"> n .
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Pay particular attention to the card columns in which this

information is placed and especially to the location of the decimal

point. Our next few cards are:

- | |
! ‘}2 314151617 |8 1012030141 15416117118119120721122)23 24{25 26127128 12913031132{33}343513637|38139] 40141
; P|RO|D| L |M| Ik M|cH 3 1. | |
' - [ S —d .
7 I 7T e i S e S S S - - T .
i :. L3 11816§7 I8 {9 10{11{12 !3[” 151161 17{18{19{20{21122|23 2.1125 26127128 129130131132)33)34]35 361’3'7 38139) it
4 AR (R L s ik
(] plr| gp| | 1L|ar jH|E 4. | B .
- - o 1 - _
1*2‘;3 4151617 18 1900111121131 LIt 1s{16E17]18119120{21122123(24125]26]27128 {29130 3\|32 33]34]35136137138139 JJ’J\
11 Jil
. P|RO|D| [1|G|RN |D|ER 2 1. ! !

Here we have indicated.the coefficient of x (PROD 1) in the
third inequality (GRNDER). We do not include a card for the co~
efficient of x in the fourth inequalify (8ALPT3) since this coefficient
is zero.

Our remaining cards are then:

V1234567 |8 |9 onfr2|islalishislizfialio 2ol 222324125 26127128 29130131{32{33{34{3513¢137 39’

11121314 5‘6 7 {8 19101V 2113 14]15]16(17] 18119]20]21 ?22324125262728293031 32133134135136{371381"
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We now input the column of constants {called the B-vector)

by first including the card

T

ey

1
o

i
+

.753#‘,1\-'3,
Lo

s
!

T

NN

3 24{25 26127126 129130]31132}33{34{35

2

oy

14115116171 18119120121}122

51617 [81{9

Hz 2[4]

and the data cards

. ). r
!

X
I

3

3]34 35
|

-
4

8129130431432

7

-

2l

Jn

1572642

EN

0|0

212

R

|
!

‘M1 I LM CH

e g

e

Vo2 0351607 {8 ]2 QO IZ2113(14{15116117118:9120

|

!
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Note that
corresponds to

card columns.

we indicate which row the constant on any card
by merely listing the row label in the appropriaﬁe

Our next. card is

21314151617 {8

10111 112413174115116117118{19120121{22123 24]25 26127128 129130/31{3233]34]35[3612713&

(&)

Nj DA |T| A

J

and indicates that we have completed our input.

!

1.4 Display Commands

After we have input our data, and before we ask for the

optimal solution (our primal solution), we may wish to analyze

and display the data. We may include the following commands in the

deck of cards.

-~
g

~

o
'a .

g

>

1074112143 t4]15116117 IS;IS'ZO 21122123} 2428 26 27 x8[29 30134132133 738035]36137138 39?’40;"1
S S fe 3 - 1 .

| | t B

EOPs SFE S OV N L R IS SRS IR PN D N U S T . }
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The commands MATRIX and EQLIST merely cause ocur data to be
displayed in matrix form and eguation form respectively. "Matrix"
.is discussed in Section 5, page 66 and in Appendix A, page 11 of
UP-4138. "EQLIST" is discussed in Section 5, page 28 and in Appendix A,
page 13 of UP-4138, A

The command MTXMAP causes the matrix displayed by‘the command
MATRIX to be analyzed and printed-in a coded pictorial form. This
command is discussed in Section 5, page 67 énd in Appendix A, page 15
of UP-4138.

The output effected by these commands is given on the next
four pages, the third and fourth pages of output corresponding to
the command MTXMAP.

With reference to the matrix tableau, the names we have given
éo the objective function and the restraints of condition (1) are
listed in the column at the left. The names we have given to the
17 Xp¢ and x5 are listed in the top row.

The element in the row labeled LATHE and the column labeled

variables x

PROD 2 is 3.000000. This corresponds to the fact that "3" is the
coefficient of X, {represented by PROD 2) in the second restraint

of condition (1) (represented by LATHE).
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Note that the column headed B-VEC (and also the column headed
*Bl) contains the right-hand side elements of the restraints of
condition (1)

This matrix corresponds to an LP problem in which the objective
function is to be maximized and the restraints are all inequalities
of the ?fﬁﬁ order. Compare this matrix with the matrix in Section
3.2, Part/III. In that case, the matrix corresponds to an LP
problem in which the objective function is to be minimized and in
which the restraints of condition (1) are inequalities of the "2&"
order.

For illustrative purpoéés, note that to find Xy Xy and x

3

which maximize

X, - 232 + 3x3
is equivalent to finding Xyr Xy and X4 which minimize
~(x1 - 2x2 + 3x3) = =% + 2x2 - 3x3.

Also,vxl, X5, and@ x, are such that

3

4x, + X%, - 5x5>10

1 2
if and only if

~-4x., - x

From the MTXMAP output, we read that the element in the row
labeled MILMCH and the column labeled PﬁOD 2 of the MATRiX OUTPUT
for this problem should be greater than or equal to 1.0 but less
than or equal to 10. This is indeed the case since a glance at our

. _
matrix output reveals that this element is 2.0.

1.4
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‘Also, the MTXMAP output tells us that the element in the row
labeled LATHE and the column labeled PROD 3 of our MATRIX output

should be a zéro. A glance at our MATRIX output confirms this.

1.5 GOGOGO

The command GOGOGO causes an optimal solution to be obtained
if such a sdlution exists. The activity of the 1108 which is
triggered by this command replaces the calculations discussed in
Part II. It is therefore an extremely impoftant command. For a
further discussion, see Section 5, page 39 of UP-4138.

We follow the GOGOGO command with the command PRIMAL. This
causes the optimal solution arrived at‘by the command to be printed.

The two cards which follow our display commands are therefore:

’;.Ef‘i;i7 ;Ii; ’); ..’ AY H'T;Sll.—ﬁ ?‘i—?—i.JJI:'A-I(—‘i’Z»]IZU!ZSYglégt ?8%29(?0;’31}_32{33 3"?3336:3‘!,%,
co ‘claglol |1 i} u!-l&!!t“!:u;:g&r
T e T e

mprme e oma e .
L-hz?ui ! 5'(6 17—LU ‘9, GIZ« Yy 23'2u
.‘ i__‘ !;l,‘L . -_.._T-t..., l ,
. ; i L
: J oo b ] F !

)

25 25(27{48129 30 _]3‘{33 3*4 35 i6 R

N .‘1

Recall our example of maximizing the profit function

20xl + 6x2 + 8x3 subiect to:
(1) 8xl + 2x2 + 3x3 < 200
4x1 + 3x2 >>100
2xl + x3 f; 50
x, < 20



~139-
III: 1.5

The optimal solution to tals problem is read from the output ‘
on the following page.

Interpreting these results, we see that, in order to maximize
profit, the manufacturing firm (Section 2.1, Part II) should produce
(on the average) 13 3/4 units of product 1 per week, 15 units of
product 2 per week, and 20 units of product 3 per week.

Note that GRNDER = x_ takes on the nonzero value 2.5 in

6
the optimal solution. Recall that we introduced Xe into the in-
equality
to obtain the 2xl + X3 < 50
eguation 2x1 + X3 + Xe = 50

The "best" value of X is 2.5. This means simply that the

manufacturer should not use 2.5 machine hours per week of the 50

machine hours per week available on the grinder.

|

We therefore have that Xqr Xy X and x, are our basis

3 6
variables. We can easily calculate the optimal value of our

objective function (the maximum weekly profit) by calculating

+ C + Cc, X, + C + c. x. + cC

€1 *1 2 *2 3 %3 4 *4 5 %5 6 *6

20(13 3/4) + 6(15) + 8(20) + 0(0) + 0(2.5) + 0(0)

$525

I

However, this information is contained in our primal output.
We merely look for the objective function label and read the

negative of the "Activity Number" beside it.
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In our case we note that our objective function label, PROFIT,
has an "E" to the left of it. We therefore read ~.5250000+03 by
moving the decimal point 3 places to the right to obtain -525.0000.
The optimal value of our objective function (maximum weekly profit)
is therefore $525.

Note also that the "cost" is listed next to the name created
for each variable. The "cost" listed next to the name created for
variable xj is nothing more than cj, the coefficient of xj in

the objective funeétion.
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CHAPTER 2: POST OPTIMAL ANALYSIS

2.1 The Dual Problem

‘Agside from the fact that the utilization of an eiectronic
computer to obtain the optimal solution to an LP problem is much
more efficient than performing the simplex method by hand, addi-
tional information can be obtained from'the 1108 after the optimal
solutign has been found. For-the most part, this additional in-
formation is of the "what if . . . " nature. That is, suppose we
glter our original problem in some manner. What can we then say
wgout our previous results?

We begin this post optimal analysis by considering the dual
" problem.

Let our general LP problem:be to, find X3 i=1,2,...,n
which maximize

€1

subject to:

(1) + a

all xl 12 x2 + . 0 . .+ aln anbl

a21 x1 + a22 X. + . L

+
[
I
o]
]
=]
A
o
L

O S
~

(2) %x,>0; i=1,2,...,n
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We shall call the above LP problem our Primal Problem.

Corresponding to this primal prcblem, we have the following Dual

Problem.

Find y;; 1 =1, 2, . . ., mwhich minimize

subject to!

(1) apy) ¥y *ay vy +agp vzt .o tay v, >0
12 Y3 YAy ¥y tazp ¥yt .o ta, ¥y, >0
n yl + a2n Y, + a3y Y3 toee e # 2mn Yan:cn

(2) y,>»0; i=1,2, ... ,m

Note that we have changed form maximizing to minimizing the
objective function and that in (l), we have changed the order of
inequélities as well as interchanging the rows and columns éf
coefficients;

EXAMPLE: Recall that the example with which we have been working in
Chapter 1, Part III, is:

2x1 + 6x2 + 8x

3
Maximize subject to:

(1) 8x, + 2x. + 3x3 < 200

1 2
4x, + 3x, < 100

2Xl + x3 f; 50

X5 5;20

(2) %5 >4; i=1, 2, 3
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Our dual problem to this primal problem then is:

Minimize
200yl + 100y2 + SOy3 + 20y4

subject to:

(1) .8yl + 4y2 + 2y3- >2
2y, + 3y, =6
3y, + Yy * ¥y >8

(2) y.>0; i=1,2, 3, 4

If the general LP problem (page 124) is such that a few of
the inequalities of condition (1) differ in order, the situation
can be remedied by multiplying by a negative one.

If any of the restraints of (1) are equations rather than
inequalities, we adjust the dual problem appropriately. That is,
if the i-th restraint (i =1, 2, . . . , m) of condition (1) in
the primal problem is an equation, we remove the nonnegativity
requirement from the i-th variable, Yy in the dual problem.

Likewise, if the i-th variable, X of the primal problem is
not required to be nonnegative by condition (2), then the i-th
restraint in condition (1) of the dual problem is an equation.

This may seem a bit complicated, and indeed, duality theory
can become very complex.

® % The important thing to ncte here is that to every restraint

2.1

in condition (1) of the primul problem there corresponds a variable

in the dual problem. * * *
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It seems, therefore, that information about the restraints
in (1) of our LP problem (the primal) should be obtained from the
solution to the dual problem. This information is obtained by

merely including the card

] AR e
e ;J}i wlsiaiz]siafrolrifszlajinfislishs .a,«s..'I;u 22]23| 29
A S - N
D WAL L]

in our deck after the command, PRIMAL.

[2sl26]27 zéliéFb 2l ’33}"5335 séﬁﬂ?ﬁ
isnnil

An interpretation of the significance of the solution to the

~
[

dual problem can be found in Gass, page 93. With reference to
our example, the 1108 will interpret the dual solution and print
the output given on the following page.

We read from this that if the right-hand side of the restraint
corresponding to MILMCH were increased by one unit, then the ob-
jective function would increase by 2.25 units, the listed shadow
price. If the'right—hand‘side of this restraint decreased by one
uﬂit, then the objective function would decrease by 2.25 units.
That is, with reference to our original problem, Section 2.1,
Part II, if there were 200 + 1 = 201 machine hours per week available
on the milling machine, the optimal solution would yield a value of
$525.00 + $2.25 = $527.25 for the profit function. If there were
200 - 1 = 199 machine hours per week available on this machine,
the optimal value of the profit function would be $525.00 - $.50
= $524.50.

Also, if the sales potential for product 3 were 20 + 1 = 21

units per week, the optimal value of the objective function would
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‘be $525.00 + §1.25 = $526.25; while if this sales potential were
20 - 1 = 19 units per week, the optimal value of the profit function
would be $523.75.

A change in the machine hours per week available on the
grinder, however, would have no effect on the optimal wvalue of the
profit function.

If a negative shadow price had appeared, an increase in the
nunber to the right of the "<" sign in the corresponding restraint
would cause a decrvease in the optimal value of the profit function.

It should be noted that we wished to maximize our objective
function in this problem. If the objective function were to be
minimized in an LP problem, a positive shadow price listed next to
a restraint lapel would imply that an increase in the number on
the right-hand side of the "<2" sign for this restraint would cause

the optimal value of the objective function to decrease. Likewise,

a negative shadow price for a restraint in a minimization'problem
“would imply that én increase in the number to the right of the
"<" sign in this restraint would cause the optimal value of the

objective function to increase.

2.2 Reduced Cost
WeArecall from section 3.2, Part II, that the optimal solution
to the LP problem:

Maximize X, + P,
aximiz cl 1 ¢, xz_ S
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subject to:

(1) a x, + a

11 *1 12 %2 T e

21 xl + a22 x2 + . . s . .t a

+
A5

a 2n Xn 2

R s2e00ey

(2) x, 20;

=
It
o}
[{%]
-
-
o]

is determined by the proper choice of the m_basis variables. That
is, if we know which m variables are our basis variables for the
optimal solution, this solution can be easily found by setting the
;emaining n-m variables equal to zero and solving the resulting
‘system of m equations in m unknowns (for which there exists a unique
solution by the assumption of Section 3.1, Part II).

Adsume then, that we have obtained an optimal solution to
-+4he above LP problem. Suppose now that this LP problem is altered
somewhat. That is, we are faced with an LP problem which is similar
to our original except that a change in the physical phenomenon for
which it is a model efféct a slight change in the coefficients of
the objgctive function (the cj) or a slight change in the right
hand side values of condition (1) (the bj).

The gquestion arises: Will the basis variables for our optimal .
solution to our new problerm differ from the basis variables for the

optimal solution to our original problem?
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In particular, the Reduced Cost output, obtained by including

the card

T o s o] 7 [e o o] .,"'.‘:.;",s o] iad isteo]a Jaufos]aufas] e[ 2] ] aslao]a [ 3a whis]as]ar!
B AR e R e ea R AARR KRN AR

in our deck after the DUAL command, answer the following question:

©w

* * Suppose Xj is npot a basis variable for the optimal solution to
our LP problem. By what amount must cj, the coefficient of xj
in the objective function, be reduced before xj can become a basis
variable for the optimal solution to this altered LP problem? * *

The reduced cost output for our example'is given on the following

page. We read that if our objective function

20x, + 6x

1 2 + Bx., + Ox, + Ox. + Ox_. + Ox

3 4 5 6 7
were changed to

20xl + 6x2 + 8x., - 2.25x%

3 4 + Ox5 + 0%, + Ox

s 7!

the nonbasis variable, Xyr (represented by MILMCH), of our original

LP problem would become a basis variable for our hew LP problem;."
Likewise, if our objective function werxe changedrté

20xl + 6x, + 8x3 + 0x, - 5% —-OXG + 0x7,

the nonbasis variable Xg (represented by LATHE) would become a
basis variable for the optimal solution of our new LP problem.
Also, if our objective function became

20xl + 6x2 + 8x3 + Ox4 + OXS + Ox6 - l.25x7,

the nonbasis variable, X (represented by . SALPT3), would become a

basis variablé for the optimal solution to our new LP problemn.
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2.3 Ranges

The inclusion of the card
l—; 3 ;t%ﬂl"{ﬂ}g HF{{H[N{!;PEF; H!E19.;“0{3_1‘}51!2‘3{{'1(25];6{271A'.]29‘30%}13]13“{3136F%‘E81;3.9'*\‘~'
i . 4 - e e g - . - [ o % B
R_EJN‘_ Sl 1.1 i L ] ‘ | fﬁ

in our deck after the REDCST command will effect the Dual Range

=

Qutput and the Primal Range Output.

2.3.1 Dual Range Output

Suppose the restrainﬁ (1) of our LP problem is in the form

all xl + aj g, x2 + . . . .+ aln xnlfgbl

ay1 ¥y + a5, X, toeo. e et a, Xn.5;b2
amlx1+am2x2+... . .-l»amnxngbm

We create a system of equations by introducing slack variables

to obtain

all xl + a12 x2 + . . . .t aln Xn + Xn+l = bl
a21 xl + a22 x2 o a2n Xn + xn+2 = b2
aml xl + am2 x2 + ¢ e v e+ amn xn + Xbm = bm

The dual range output gives us information about the nonbasis
variables for the optimal solution to our LP problem. That is, it
tells us the range in which the "original activities" of the non-
basis variables may vary before the respective nonbasis variable

will replace a listed basis variable.
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By the "original activity" of a variable, we mean the value
which that variable assumes in the first step of the simplex
procédure. A slack variable will be in the basis for this first
step of the simplex method. The original activity of a slack
variable will therefore be the right-hand side of the inequality
which it represents.

* * *Prom the dual range output, therefore, we obtain information
about the right-hand sides of the inequalities which givé'rise to
slack variables which are not in the basis for the optimal solution.* * #

The dual range oﬁtput answers the following question:

* * Suppose that Xy is a slack variable which is not in the basis
for the optimal solution to our problem. By what amounts'may the
right-hand side of the inequality which gives rise to this slack
variable vary before a basis wvariable for the optimal solution to
our original problem is replaced by xj as a basis variable to the
optimal soiution of our new problem? * *

Xgr Xeo and X (represented by the labels MILMCH, LATHE, and
SALPT3: respectively) are the variables which are not in the basis
for the optimal solution to our example problem. Furthermore,

Xgr Xgo and X, are slack variables corresponding respectively to
the first, second, and fourth inequalities of condition (1). The
"original activities"” of Ryr Xgo and X, are the right-hand sides of

these three inequalities: 200, 100, and 20,respéctively.
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The duval range output for our example is given on the following
page. From this we read that the right hand side of inequality
MILMCH may vary between 200~73.333333 = 126.666667 and 200 +
73.333333 = 273.333333 without effecting a change in the basis
variables for the optimal solution. If the right-hand side of
this inequality is decreased beyond 126.666667.in our new LP préblem,
Xy (repfesegted by PROD 1), which is a basis variable for our ori-
ginal problem, will no longer be a basis variable for the optimal
solution of our new LP problem. If the right-hand side of this
inequality is increased beyond 273.333333, the basis variablg Xe
(represented by GRNDER) will no longer be a basis variable for the
optimal solution of our new LP problem. )

Likewise, if the right-hand side of inequality LATHE decreases

beyond 100 - 10 = 90, basis variable x_ (represented by GRNDER) will

6
leave the basis. If the right-hand side of this inequality increases

beyond 100 + 110 = 210, basis variable 3
\

will no longer be in the basis for the optimal solution to our

(represented by PROD 1)

new problem.
Also, if the right-hand side of inequality SALPT3 decreases

beyond 20 - 20 = 0, basis variable x, (represented by PROD 2) will

2
not be in the basis for the optimal solution to our new problem.
If the right-hand side of this inequality increases beyond 20 +
24.444444 = 44.444444, X, @ bgsis variable for the optimal solution
to our original LP prcblem,.will not. be in the basis for the optimal

solution to our new LP problem.
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2.3.2 Primal Range Output

Let the objective function of our original LP problem be

X, + o o+
2 ¢ h *n

~

C X + C

17 2

The primal range output answers the following question about
the basis for the optimal solufion to this original LP problem and
the basis for the optimal solution to the LP problem created by
changing the above objective function:
* % Suppose that xj is a basis wvariable for the optimal solution
to our original LP problem. By what amounts may cj (the coefficient
of xj in the objective function) vary before xj is replaced by
another variable in the basis for the optimal solution to our new
LP problem ?* *

The primal range output for our example problem is given
on the following page. From this we read that if 0, the objective
fﬁnction coefficient of x, (represented by GRNDER); decreases

6

beyond -2, x_ (represented by LATHE), rather than.xe, will be in

5
the basis for the optimal solution to the new LP problem.

Also, if 6, the objective function coefficient of Xy
decreases beyond 5 or increases beyond 15, X, will be replaced by
X or‘x4,respectively,in the basis, for the optimal solution to
the new LP problem.

Finally, if the objective function coefficient of Xy,
6.75, X0, rather than Xqy will be in

decreases beyond 8 - 1.25
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the basis for the optimal solution to our new LP problem. However,

this coefficient of x5 may increase as much as we desire (indicated

by the 9999) without causing x., to leave the optimal basis for

~

3
the resulting LP problem.

We have seen that if we have an LP problem:

Maximize clrxl t oy Xy b o kol X
subject to:
(1) a;4 ¥g + alé_x2 + o . . . F aj, x = b1
ay1 ¥ + a22 x2 + . 0 . .+ a,, X, = b2
;ml ¥yt ¥yt e s A ¥y T bm
(2) X 20; 1i=1,2, ... ,n

‘for which we have a solution, and if we then alter a cj or a b.
slightiy to obtain a new LP problem, we may be able to determine
from the output of our original problem, the basis for the optimal
solution to the new problem. Knowing the basis for the optimal
solution to this new problem enables us to find this optimal solu-
tion in a straightforward manner rather t;hzm attacking the
problem with no information about the solution.

If we are solving the problem by hand, we merely solve DX = B

1

to obtain X = D "B where D is the square m x m matrix whose columns

are the optimal basis vectors.
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If we are solﬁing the problem on the UNIVAC 1108, we can specify
the basis variables in our deck of cards. For the specific tech-

niéue here, refer to UP-4138, Section 5, page 54, 5.29.1.2.

Y

2.4 Errors

The card

T N g a— e - ¥ T Ea
rlatafslslelriatatele raatnshisnitoasofada)zinages 2612 m}zs}m 3 {32{33 3«{35}36.34;@4;;9 .t
. T T I
; BERE

‘+f T T
E[RIR| QRIS Pyl

bt !
il :

-~ :

included in our deck after the command RANGES effects the output

of the Dual Error Analysis and the Primal Error Analysis. These

errors may arise as a result of the repeated rounding of decimals

at each iteration.

2.4.1 Dual Error Analysis
Recall that in each tableau of the simplex method, we have
a vector, T, whose components are the objective function'coefficients

of the variables which are in the basis for this tableau.

The optimal basis gives rise to our final tableau. The T

(ot
s N
vector for this final tableau is the C. where Rgr Xpr oo o X
are the basis variables for the .
St

optimal solution to,the LP problem.

For this T, we can then calculate T"Pj = cj for 3 =1, 2, . . ., n.

0
Note that i€ Xg is a basis variable, then Pq = eq = A\Qq—l zeros)

in the final tableau. Hence T 'Pq = Ocl +

e btee

| o e = basis
Oc2 + oo .t lcq + + Ocn cq for a

vector P .
q
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If we letlzj =T 'Pj, we see that if our calculations are
exact, we should have Zj = cj fecx those j for which xj is an
optimal basis vector.

The dual error analysis output lists éhe labels for the
optimal basis variables and then the corresponding Zj and cj and
their difference which should be zero except for rounding errors.

The dual error analysis for our example is given on the

following page.

2.4.2 Primal Error Analysis
An error analysis whose nature is easier to understand is
the primal error analysis. We lcok at condition (1) to our LP

problem in its final form as a system of simultaneous linear

equations:

all'xl + ay, %, + . 0 . . * a1n xn = bl

asq xl + ayn %, + . . . .t an X, = b2

an ¥ + a s X5 + . e . an *n = b

We take the optimal solution, ; which we obtain and

substitute these values into each of thej.
m equations. We then compare the X
value obtained by calculating

aj) Xy a5y Xy F a5 Xy . e F oA, X
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(for Xyo Xgr oo o o g X of the optimal solution) with the bi on

the right-hand side of the equation.
Our primal error analysis output, then, contains the name

created for each of the equations with the calculated value of

A

aj; ¥ Y 35, %

of the designated equation, and the difference {which should

X, + 4 . .+ a X, the bi on the right-hand side

in

be zero except for rounding errors).

The primal error analysis for our example problem is given

on the following page.
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CHAPTER 3: SAMPLE RUNS

We shall 1list here a printing of the deck of cards necessary
to obtain the information which we have discussed as well as the
information obtained as a result of submitting said deck of cards.
We shall do this for the five problems discussed in Chapter 2,

Part II.

3.1 The Product Manufacturing Problem

We have created names for the variables X1 Xy1 Xgy the four
inequalities, and the objective function inSeccnn;1.3,PartIII.
The 1108 then assigns the four names which we have created for the
four inegqualities to the four respective slack variables Xyr Xoo

Xe s and Koo

Our deck of cards for this problem then has the following order:

a_RUNs /R RCTPRISNFGRCT LPPWR, 15,50
FREE TPF$ :

RASG,T TPFg:F///500

GASGE,T LPTAPEsTsl181E

GASG,T 9 TsSCRTCKH

GFINDsA LPTAPE . LPL10OR/ESS

GCCRIN,A LPTAPE.LPLLI0B/ERSTPF %,
GFREE LPTAPE

GXGT .L.P1108/EaAS

LCaD

RCw 1D
g PROFIT +MILNVCH +LATHE +GRNDER

MATRIX
PRCD 31PROFITY 20,
PROC 1MILMCH 8.
PROD 1LATHE L.
PROD 1GRNDER 2o
PROC 2PROFIT 6.
PROD 2MILMCH 2.
PROD 2LATHE 3.
PROC 3PROFIT 8.
PRCC 3VILNMCH 3.
PRCC 3GRNDER 1.
PROC 3SALPT3 1.

FIRSTB .

TMILMCH 200,

+SALPT3
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LATHE 100,
GRNCER 50.
v SALPT3 20,
ENCATA

MATRIX
EGLIST
NTXNVAP
GCECO6C
PRINVAL
pual

RECCST
RANGES
ERRCRS
ENCUOE
& FIN

We have seen in Chapters 1 and 2 the information which we obtain

as a rasult of submitting these cards.

3. jThe Diet Problem

Recall from Section 2.2, Part II, we wish to minimize

l.Oxl + l.lx2 + 0.5x3 (COST)

subject to the restraints:
(1) x, * X, + 10x, 2 1 (VIT B)
lOOxl + le2 + le3 > 50 (VIT C)
10x, + 100x, + 10x., 210 (VvIiT D)

1 2 3

(2) x5 20; i=1, 2, 3

We create the following names for the variables Xyr Xy, Xgt

GLMILK = x, = the number of gallons of milk in the daily diet
LBBEEF = X, = the number of pounds of beef in the daily diet
DZEGGS = Xz = the number of dozens of eggs in the daily diet
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We have created names for the three restraints of condition
(1) and the objective function and have labeled these rows accord-
ingly. The 1108 will assign the label which we have given to any
inequality to the slack variablerhich arises from this inequality.

Therefore, if we write condi£ion (l)vin the form of three

linear equations, we have:

*xl - x2 - 10x3 + x4‘ =- ]
--lODxl —10x2 - le3 + X ==50
--10xl —lOOx2 - 10x3 + x6 ==10

(See Chapter 1, Part II}
x4; vVIiT ¢ = XS; VIT D = x
A listing of the cards for this problem follows.

The 1108 will assign: VIT A =

& RUNs /R RCTPR2,NHGRCT» LPPWR 15,50
‘GFREE TPF$

GASG,T TPF$,F///500

GASG,T LPTAPE,T»181S

GASG,T 94 T,SCRTCK

GFINDesA LPTAPE.LP11087EBS

GCCPIN,A LPTAPE.LP1108/EBS . TPFS.
GFREE LPTAPE .

GX6T .LP1108/EBS

SET OBJECT TO (MIN )

LCap

RCw IC

' 4 cesT -VIT A -VIiT C =VIT ©

MATRIX . :
GLVILKCOST 1.
GLFMILKVIT a4 1.
GLMILKVIT C 100,
GLYILKVIT D 10,
LBBEEFCOST 1.1
LBBEEFVIT A 1,
LBBEEFVIT C 10,
LBBEEFVIT C 100.

o CZEGGSCOST 5
N2EGGSVIT 10,

A
NZEGGSVIT C 10,
_RZEGGSYIT D — 10. . .
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FIRSTR
VIT A b
vit C 50.
VIT U 10.
ERNCATA

NVATRIX
EGLIST
VTXVAP
GCCCGC
PRINVaL
cLab

RECCST
RANGES
ERRCRS
ENCLCR
& FIN

As a result, we obtain the information given on the following

rages. Note that page 170 relates to the MTXMAP ocutput given on
}
wédge 171.
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ITI1: 3.2

Note that the 1108 has changed our problem to the following:

Maximize
- l.Oxl = lflx2 - O.5x3
subject to: v
(1) Xm0 X, - 0%y << -1

1 2
—lOOxl - le2 - le3 < -50

—

~lel —lOOx2 -10x3 55 -10

(2) x,>0; i=1,2, 3

The dual output, reduced cost output, etc., for this example

are given on the following pages.



akmﬂ - . .
pl_ v..\i- o e v o o
’ G vaw.“ - - -
— << 2 . o
7T < gmer e
1 o .
A4 oy [ U U UV
~ <=
- 7z =
1 mm [ 9
mw«
o QO
t
t
“IhaIno S9nA ara
) i Cisgnne B8OOGS VIS
h02800° 000000 3 11ia 1ep1€0e ainorge v o 11A ooanone on0anne 1803 2
321dd H0QYHS 180> TARYY 351Hd MOQVHS 150> T30y T 3DTud HGGYHS IV
- 1aL1gH9S %~ ANTVA 3AJ4LD30H0 g HOTLYNILT agvd
LNdIno MyNa - )
tpDeci0eli0n”

0é oy 0Z,




————— - ———n >
13 e wa e}
Id
2} W e e
- i et j
= ..
— -«
s . L
— =] ;
= . -
=
o & |
e Qe — s e .
N OO0 ;
4 - - - P
N .
o e
; —_
I
—— - —— “
=y e
1)
1
1Nalnn »mum..mzllm.mw...:!im
S1ApYSe = GLuanan T ;,
51R6LDY 00gnan? e Lia hhgpons ounEnQe 5 L1A IFhpgne Soaion. v ol i
1803 320A3y Isas R IS05 350G3H 1505 TERY T IR 1503 REC IV w
TPLInh9S = IATWA 3£1id9r60 o MO IvNYLT 15V i
— ihdine 18503y
In6*Z1G%1Ga° S
\f; n . d “Wny ne
T 1
s e— N DT T R D RN e P S i akn a3 e e R P e

—— m\la@;

¢



DDV

- DU
!
-1 - e -
"
I ) -
v
— —
_.
TAdino 3onexn Avna ava
TS ETT I3TRET UONFO0 RS S9937G uARonaenT. G 114
. s18tglefh X110 644644 ° 4h= €5937G UNNOonenS- 3 1t
ShGhGh SobS320 6bAb6AA K" 433087 00ponn* 1= L S ¥
INIEIUINT  T3%vI Laawanang M3RYT *10Y ealx0 T3k¥I
=+ = = = JONYH J5 SITRIY = = <« = = = ) -
tap1gh9Se= 3nTvA 3A1L03060 NOILVNILT __3s¥)
I0dLA0 3HNYN Tvnd _ o

TBAYETn 100"




i, T
L p— —
3
- e e
T N T
- .
= m e
xw MW\ . .
. & o
—_— — P
=N :
B
- R ﬂ.ﬂ
it SO —
~ —
—
—7 R SR
- - ITaIne 3snve wiidd otz 777
)
- TEGane e TN TR AR iR NI T A O RGuS Y T T gev3za T
LARAR T 0 LIA 1OnPORec- YLl A Longnte - FERTITIR
ShehgPe IR R e [ T L N B TR Dottt
RRL I YY) IR N hIav

ANINANIMT

-

q3fivn

TSR O

IMIFURNINT

VOOITA Uognan.

I |

150D

ASDD
A3uvn

EREES R &)

- . e

IERIRM9G = AnTIYA 3A[LINCED g

pOELYNILL

INdLA0 3BN¥N yHINd

1g0+*02GCe100"

T Ty T




-

&
¥

(ﬁTAYTYY

ORIGINAL PPGE !
of POOR

Suy370 INAVINHgA we g /0%0NIGOGH, - 40 dHoMY¥3 yna T.::—*«
TALLAAARLELY S nnss~- noge. 509370
LU«T9T1 &R T RoTeY= AeT TS 23637
. - gnanniane nnne i NON*1- NTIRTS
JOCIGTEG LG aeas TNy
H¥0HY3 (rid iry7 138V
= €ISATvHY H0EN3 qvna
rad*zzneTag? T AL YA T
4

s e e,



; .
llllll e e
3
1
—_— N {
g s W
— ) “IA - - .”
v - " N M
e S
Sl 2N H
[nP , e e :
el !
== e M
BT |
- ( W
{ m.,. W -
&
- wmn - e e _ i
~ Q0O :
l : 1
1 - T ’ - 4.
e : i

- 5 _A1A 3FYINVA %04 Ynenl rao/me

30 H0MNT Nvulna HESES Ban

IN-bZ51,61 10w AL R -

- -
SO=YTLCnY i AT TS mwmhmeflflm.lw“w, L
JriinCone none e NA0S 1w vo11s «
FRPEIAE DI S pe nete nce L8037
SELLE {118 37v) 1136 ninn ;

A28y
L 81Saqyny womyy W TN w
1ofegzos 100 m
]

3

RE L




: 3.3

RN

(0T 1oa)0 > ¢Txr-o

Vi

(gz 1od)0
(8T 10d)0
(¥ 104)0

{¥Z 124) o

Vi Al v VA

(¥T L2d) 0
.Awamoszoooamme+
W (EQuONI) 0007 >

(ZQ¥ONI) 0002 >

(TQUONI) 000E >

Ty, -0 - Olx -

bxg 0

8

8

XG* 0 L

—

X+

Ty,

X+
0T

X4

8

x50+ 8xg- o~

9ZTWTIXEW O3 YSTM M eyl ‘II 3aed ‘€°7 WOIl TTeoay

L

X1°0 - “x1°0 -

XG0+

9

X6°0 +

Al

XG0 - °XG'0 -

X+

9

XG° T~

s etz =T 0T X (2)
munn—.. Q-
Sy
0
Yxgo - Exgeo + Txsr0 - Txgo-
Pxpeo - Fxpo0 - Zx9°0 + Txp-o-
Pxpr0 - Fxge0 - xgro - Txivo
Vun
mx
Nun
X+ Ty .
(T)
:03 09fqns
A PR & SESUNI | S
Sxg 1+ Txgr0+ Fxge1s Txgr0- Ixgeg

WATqoId XTW SUTTOSED 9YL €°€



Here we have again

of condition (1) and to

following names for the

1

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

1108

A=x.= # barrels of

11 fn

LH 113

barrels of

barrels of

#
#
#
#
#
B=x_= # " "
#
#
#
#
#

~180-

indicated the
the objective
variableS’xl,
constituent 1

" 2

H 4

constituent 1

Q
Q
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=
14
o]
=
L) = L w

JII: 3.3

name given to each restraint

function.

XZ, * - e

3

ailocated

We also create the

' le’ We let:

to gasoline'grade A per day
grade & " "
grade A " "

'grade A "

to gasocline grade B per day

o

grade
grade
grade
to gasoline grade
n u

grade

grade

0O 0o Q0 0w w

grade

A listing of the cards which we create to submit to the univac

follows:

i RUNe/R . RCTPR3I/AHGRCT LPPWR,15,50

«FREE TPF$

GASG,T TPFs.F///500

RASG,T LPTAPE,T»1815

GASG,T 9sT,SCRTCH

GFINDea LPTAPE.LP1108/ESS
GCCPIN,A LPTAPE.LP1108/ERSTPFS,

GFREE LPTAPE
RXGT LP1108/E8S
LCAD

RCw ID ‘
5 PROFIT
5 +PCT 1A

1 +PCT 1C

+INGRD1
«PCT 2A

+INGRD2
+PCT 2A

+INGRD3 +INGRDY
+PCT‘18 ~PCT 28



NMATRIX -

EEE LR NN o E & L EHWRWENOMNONN I e pa e P E S S LG EGIN NN NN b ps st b

APRCFIT
AINGRC1
APCT 1A
APCT 2A-
APCT A=~
APRCFIT=
AINGRCZ
APCT 1A=
APCT 24
APCT A=
APRCFIT
APCT 1A=
APCT 2A-
APCT 3A
APROFIT
AINGRCU4

- APCY 1A~

AFCY 28=
APCT ZA=
APROFIT
RINGRDL
RPCT 18
BPCT 2B-
BPROFIT=
RINGRD2
APCY 1B-
BPCT 2B
BPRCFIT
BINGRDS
BPCT iB~-
RPCT 28-
BPROFIT=
BINGRDU
BPCT 1B=

BPCT 2B~

CPROFIT
CINGRC1
CPCT 1C
CPROFIT=-
CINGRD2
CPCT 1C~
CPROFIT=-
CINGRDS
CPCT 1Ce
CPROFITw
CINGRO4
CPCY 1C-

~181~

IIX: 3.3

i NS



FIRSTR

ENCATA
VATRIX
EGLIST
“NTXMARP
GO0GOGC
PRIMAL
cUAL

REDCST
RANGES
ERRCRS
ENCUOB
& FIN

INGRC1
INGRCZ2
INGRL3
INGRDY

2000,

2000,
4000.
1000.

-182-

III:

As a result, we obtain the information given on the following

13 pages.

3.3
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CIII: 3.4 .

We have again labeled each of the restrainfs of condition (1) ;

: ) . . !
and,the objective fnnction. We create the following names for the/,
o » _ . ; |
variables xl, xz( Xgr » » = 1 Xgt .

Al = X = the number of acres at farm 1 devotes to crop A
A2 = x, = " " " ® " farm2 " " erop A
A3 = xé = » "o W faem 3 " " crop A
Bl = Xy = " " " "M faym 1 " * crop B
B2 = x; = woom u "W farm 2 v " crop B
B3 = xﬁyé LI S “fi¥"-:farm 3 v érop’ﬁ
Cl =‘x7 = the number of acregaat farm 1 devoted té crop C
c2 = Xg = " .o LA f&rm 2 v " 1cr6p C
C3 = Xg = " " " " 74 -farm 3 " " crop C

Our deck for this run, then, consists of the following cards:

1

s RUN«/R RCTFH“ONHQRCTOLPPWHO15050
LFREE TPFs ’

BASG,T TFFS.F/1/500 ’ j
GASGsT LPTAPE.T»1815 o
GASGsT 99 T+SCRTCH )

RFINDsa LPTAPE.LF1108/E8S

GCCPINeA LPTAPE. LPIIOB/EGS;TPFS.
GFREE.LPTAPE . § |
SXGT cLPllOB/EBS

L0aD : x
ROW 1D ‘ , : . - ‘
. ‘ 5 PROFIT  +ACRGEL +ACRGE2 +ACRGE3 +WATERL
L 5  4WATER2 +WATER3 +AC C A A CB +ACCC
- 2.0 . WKRES1. .. _MKRES2 — . ... o .. L

MATRIX |
' a1 PROFIT 400, i
a1 ACRGEL 1.
a1 wATER1 S,
Al ACC&a& 1.
Al WKRESL 3.



: . : : . R R
G Jo Sii EE A i ¢ o i i

ENCATA

MATRIX ‘ _ v - A
ESLISY N
MTXi AP o i S /
606060 f= - : S
FRINAL
DUAL
RECCST
RANGES
ERRORS

~ ENCuWOB

. & FIN

We obtain the informhtion given ot theffcllowing 13 pages.

L 5 . $e . : oy N « . r
A : ' L « :

‘3.5 "The Nut Mix Problem’
From Section 2.5, Part 1II, we wish to maximize

#15%) + 225%) + .15xg = .30xy *+ .10xg + Oxg - .40, + Oxg = .10x, (PROFIT)

(same as on page 93} subject to:

(1)

~0.25%, + 0.75x, - 0.25%, R .. < 0(MIX A2)
-0.75x%, + 0.25x5 + 0.25x6 < 0({MIX Bl)
-Q.S X, * 0 .5 Xy = 0.5 Xg < 0 (MIX B2)
X, +x, | S +Xq < 100(cap ©)
xz‘ ‘ »‘ +x5 . S +x8 < 100 (CcAp P)
xg : +x6 :A g << GO (CAP LH)

2) %,50; i=1,2,.%.,9

We have again indicated the labels for each of the restraints

in condition (1) anhd the objective function.  We also create

5
+
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the following names for the variables xl,‘xz, R Xg -
: '

MA-CAS =

xy = the number of cashews in mi%tgre A
MA~PEA. = X, = the numbér of peanuts in mixture A
MA-HAZ =’x3 = the number of hazel nuts in mikture A
MB-CAS = X, = thé number qf cdghews in mixture A
MB-PEA = X5 = the number of peanuts in mixture B
MB-HAZ = X, =‘the number of hazel nuts in mixture B
MD-CAS = x7‘= the number of cashews in mixture D
MD-PEA = x8.= the number of pganuts in mixture D
MD-HAZ = xq = the number of hazei nuts-in‘mixtﬁre D

" A listing pof the cards in our deck for this run follows:

f RUN¢ /R RCTPWE P hNHGRCT,,LPPWB,15.50
GFREE TPF$% ‘

RASGeT TPF4sF///50

GASG,T LFPTAPE.T.»181%

RASGsT 9¢T,SCRTCK |

GFIND»A LFTAPE.LPIiQRlEBS

RCCFIN,A LPTAPE.LP1108/E8S,TPFS,
RFREE LPTAPE : o
RXET LP1108/ERS

LGAT o

5 PROFIT +MIX Al +MIX A2 +MIx Bl +MIX R2

3 +CAP C +CaP P +CaP H )
.MATRIX

VA=CASPROFIT= ' §-]

VA=CASMIX Ale 5

NMA=CASNIX A2~ 25

MA=CaASCAP C 1.0

WA-PEAPRCFIT = .25

NVA=FEAVIX Al .~ e 8

MA=FEANIX A2 - o75

MA=PEACAP P 1.0

wA=HAZPROFIT .15

MA=HAZMIX Al «50

MA-HAZVIX A2= 425
NATRAL



. IIT: 3.5

- MA=HAZCAP H 1.0
MB=-CASPROFIT- 30
VR=CASVMIX Rl=- .75
MB-CASMIX R2=- 50
VB=CASCAP C 1.0

v¥B-PEAPROFIT ol
MB=PFAMIX R1 .25
MB=PEANIX R2 o5
MB=-PEACAP P 140
¥B=HAZNIX B1 $25

¥B=HAZMIX B2~ o5
MR=aMHAZCAP H 1.0
MD=CASPROFIT= ol
¥D=CASCAP C 1.0
MD-PEACAP P 140
MD=HA2PROFIT= 1,0
MD=HAZCAP H 1,0
. FIRSTR
) cap ¢ 100,
CAP P 100,

: CAP H 60,

ENDATA ‘
 NATRIX

CEGLIST .. ..
MTXMAP
60G0G0
_PRINAL

- pUAL
RECCST
RANGES
ERRORS
ENCJOB

& FIN

As a result, we obtain the information given on the following pages.
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